
Journal of Parallel and Distributed Computing 190 (2024) 104901

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

CUDA acceleration of MI-based feature selection methods

Bieito Beceiro a,∗, Jorge González-Domínguez a, Laura Morán-Fernández b,
Verónica Bolón-Canedo b, Juan Touriño a

a CITIC, Computer Architecture Group, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
b CITIC, Department of Computer Science, Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Feature selection

Mutual information

Low precision

Fixed point

CUDA

Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing
irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of
subsequent analyses. The problem with current feature selection approaches is that they are computationally
expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three
highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR.
Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation
of them to work with low-precision fixed point in order to further increase their performance on GPUs. The
experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly
satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations.
1. Introduction

In recent years we have witnessed the Big Data phenomenon, where
data is in continuous increase in different areas such as bioinformatics,
marketing, physics or engineering. These data are interesting when we
can extract useful information from them to further guide decisions or
make conclusions. However, this data increase leads to computationally
costly analyses, and sometimes even to worse conclusions due to the
presence of redundant or irrelevant data [5].

The procedure within the Machine Learning (ML) field that chooses
only those characteristics that provide relevant information is called
Feature Selection (FS) [17]. In recent years, in the field of FS research,
many works have emerged focused on the development of different al-

gorithms that use certain criteria for the selection process [5]. These
criteria should try to find the most relevant features, but in such a way
that the redundancy among them is minimal. Some of the most widely
used and well-known methods that reach these goals are those based on
Mutual Information (MI) [7], which have been satisfactorily employed
in different scenarios, such as medicine [6,13], genetics [1,18], market-

ing [3,32], biomedicine [30] or electronics [11].

However, MI-based FS algorithms present quadratic complexity
(each feature must be compared to the other ones in every step), lead-

ing to high runtimes for large datasets. High Performance Computing

* Corresponding author.

E-mail addresses: bieito.beceiro.fernandez@udc.es (B. Beceiro), jgonzalezd@udc.es (J. González-Domínguez), laura.moranf@udc.es (L. Morán-Fernández),

(HPC) is key to reduce these runtimes and make them more feasible for
Big Data. GPUs are nowadays very popular among HPC architectures as
they provide high computational power with low energy requirements,
and they have been exploited for many years to accelerate the calcu-

lation of MI [25]. In this work we present CUDA implementations for
three highly used MI-based FS methods that efficiently exploit the com-

putational capabilities of Nvidia GPUs. Concretely, the main strengths
of these implementations are:

• They are based on three methods that use MI to distinguish be-

tween relevant and irrelevant features. The use of MI for this pur-

pose is well known and widely adopted by the ML community.

• They are highly optimized for modern Nvidia GPUs (Turing and
Ampere architectures).

• They include a specific version of the algorithms to work with fixed
point that further accelerates FS on GPUs.

• They are publicly available to download from https://gitlab .com /
bieito /parallel -fst.

The rest of the paper is organized as follows. The state of the art and
related work are summarized in Section 2. Some concepts about MI-

based FS that are necessary to understand the algorithms are explained
in Section 3. Section 4 describes the CUDA implementations, while Sec-
Available online 18 April 2024
0743-7315/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a
nc-nd/4.0/).

veronica.bolon@udc.es (V. Bolón-Canedo), juan@udc.es (J. Touriño).

https://doi.org/10.1016/j.jpdc.2024.104901

Received 12 May 2023; Received in revised form 16 November 2023; Accepted 11 A
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

pril 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:bieito.beceiro.fernandez@udc.es
mailto:jgonzalezd@udc.es
mailto:laura.moranf@udc.es
mailto:veronica.bolon@udc.es
mailto:juan@udc.es
https://gitlab.com/bieito/parallel-fst
https://gitlab.com/bieito/parallel-fst
https://doi.org/10.1016/j.jpdc.2024.104901
https://doi.org/10.1016/j.jpdc.2024.104901
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2024.104901&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

tion 5 shows the experimental evaluation and Section 6 presents the
conclusions and future work lines.

2. Related work

There are some works in the literature that already tried to acceler-

ate FS methods on GPUs. Nevertheless, up to our knowledge, CUDA-

JMI [16] is the only previous parallel implementation that can be
directly compared to any of the three methods addressed in this work.
Concretely, CUDA-JMI is focused on the Joint Mutual Information (JMI)
method (see Section 3.2) and obtained good performance on past Nvidia
GPU architectures such as Kepler and Maxwell. However, as will be
seen in Section 5.2, it is not well prepared to exploit the characteristics
of more recent Nvidia GPU architectures such as Turing and Ampere.
Another work that addressed a GPU implementation of an FS algorithm
based on MI is Fast-mRMR [23], with several versions (C++, CUDA and
Apache Spark) of a variant of the minimum Redundancy Maximum Rel-

evance (mRMR) algorithm. Nevertheless, the performance of the GPU
version is quite limited (speedups of up to 5.32x compared to a sequen-

tial C version of mRMR). This is because it is based on an old CUDA
version (for instance, it cannot exploit the modern hardware atomic
operations) and does not include features to improve memory manage-

ment such as a memory pool or asynchronism through streams.

FS methods not based on MI have also been adapted to work on
GPUs, but none of these works have led to publicly available software.
Some examples are CUDA implementations of the Singular Value De-

composition [10], the Local Kernel Density Ratio [2], and an online FS
algorithm [29]. Apart from CUDA, OpenCL is also used to exploit the
hardware of GPUs, for example, in a version of the Immunodominance
Clone Selection Algorithm (ICSA) [33]. There are also parallel imple-

mentations of FS methods directly designed for specific fields such as
electroencephalogram classification [12], brain image restoration [9],
periocular biometric recognition [14], or hyperspectral image classifi-

cation [24].

Finally, parallel implementations of FS methods for other HPC in-

frastructures have also been addressed, from clusters and supercomput-

ers using the message-passing paradigm [4,15,27] to Big Data systems
using the Hadoop and/or Spark frameworks [21,26,28].

3. Background: feature selection with mutual information and
fixed point

As already mentioned in Section 1, FS is the process of selecting
the relevant features and discarding the irrelevant or redundant ones.
Many datasets include noisy and useless features, which waste a lot
of computational resources. Therefore, FS plays a crucial role in the
ML framework by removing nonsense features and preserving a small
subset to reduce the computational complexity.

One of the most common metrics to capture dependencies between
features in ML is MI. Let 𝑋 be the set of features of a given problem,
and 𝑌 the class label. MI is defined as the expected logarithm of a ratio
in the following way:

𝐼(𝑋;𝑌) =
∑
𝑥∈

∑
𝑦∈

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

, (1)

where 𝑝(𝑥, 𝑦) is the probability mass function of the joint distribution
when the random variable 𝑋 takes on the value 𝑥 from its alphabet
and 𝑌 takes on 𝑦 ∈ , while 𝑝(𝑥) and 𝑝(𝑦) are the probability mass func-

tions of the marginal distributions. In practice, the sample (maximum
likelihood) estimates of the probabilities �̂� are used, and the equation
results in:

𝐼(𝑋;𝑌) ≈ 𝐼(𝑋;𝑌) =
∑ ∑

�̂�(𝑥, 𝑦) log �̂�(𝑥, 𝑦)
(2)
2

𝑥∈ 𝑦∈ �̂�(𝑥)�̂�(𝑦)
Journal of Parallel and Distributed Computing 190 (2024) 104901

The computation of MI is at the heart of several information theo-

retic FS methods [7]. In this work, we will focus on three of the most
used ones, which will be described in the following subsections.

3.1. Minimum redundancy maximum relevance (mRMR)

The minimum redundancy and maximum relevance optimization
criteria, both based on MI, are the foundation of the mRMR method
[22]. The score of a certain feature 𝑋𝑘, when a subset of features 𝑆 has
already been selected, is calculated as:

𝑚𝑅𝑀𝑅(𝑋𝑘) = 𝐼(𝑋𝑘;𝑌) −
1|𝑆|

∑
𝑋𝑗∈

𝐼(𝑋𝑘;𝑋𝑗) (3)

As the feature set 𝑆 grows, the mRMR criterion has a stronger belief
in the assumption that the selected features are pairwise independent.
mRMR tries with the two terms of the equation not only to capture the
relevance to the class, but also to avoid the redundancy among features
of 𝑆 .

3.2. Joint mutual information (JMI)

The JMI method [31] is focused on increasing complementary infor-

mation between features given the class labels by using the following
score for feature 𝑋𝑘:

𝐽𝑀𝐼(𝑋𝑘) =
∑

𝑋𝑗∈
𝐼(𝑋𝑘𝑋𝑗 ;𝑌), (4)

where the information between the target and a joint variable 𝑋𝑘𝑋𝑗 ,
which associates 𝑋𝑘 with each previously chosen feature, is calculated.
The main principle is that we should incorporate a new feature if it is
“complementary” to already existing features.

3.3. Double input symmetrical relevance (DISR)

The DISR method [19] is a normalized variant of the JMI crite-

rion. DISR combines two well-known properties of FS. First, a set of
features might provide more information about an output class than
the total of the information provided by each feature considered sepa-

rately. Second, it seems natural to assume that the combination of the
best-performing subsets of features is the most promising set in the ab-

sence of any additional knowledge about how subsets of features should
be combined. It uses the following modification of the JMI criterion:

𝐷𝐼𝑆𝑅(𝑋𝑘) =
∑

𝑋𝑗∈

𝐼(𝑋𝑘𝑋𝑗 ;𝑌)
𝐻(𝑋𝑘𝑋𝑗𝑌)

, (5)

where 𝐼 is the MI and 𝐻 is the entropy, which quantifies the uncer-

tainty present in the distribution of 𝑋. It is defined as:

𝐻(𝑋) = −
∑
𝑥∈

𝑝(𝑥) log𝑝(𝑥) (6)

The entropy, however, can be conditioned by other events. The def-

inition of the conditional entropy of 𝑋 given 𝑌 is defined as follows:

𝐻(𝑋|𝑌) = −
∑
𝑦∈

𝑝(𝑦)
∑
𝑥∈

𝑝(𝑥|𝑦) log𝑝(𝑥|𝑦) (7)

The relation between the entropy, the conditional entropy, the MI
and the joint entropy (𝐻(𝑋, 𝑌)) can be seen in Fig. 1. More information
about these information theoretic quantities can be found in [7].

3.4. Fixed point for MI-based feature selection

FS is usually performed on machines with high-precision represen-

tation, i.e. double-precision floating-point computations (64 bits). The
use of a more powerful general purpose processor can provide signif-
icant benefits in terms of speed and capability to solve more complex

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 1. Illustration of different information theoretic metrics.

problems. But this capability does not come without cost, as a con-

ventional microprocessor can require a substantial amount of off-chip
hardware support, memory, and often a complex operating system.
Modern Nvidia GPUs provide support to perform operations with lower
precision (32, 16 or even 8 bits) at high speed. Therefore, adapting FS
methods to work with these data types can help to increase the per-

formance of the CUDA-based implementations. Moreover, being able
to reduce the precision of the computations performed by the FS algo-

rithms reduces the memory footprint, thus enabling larger models to
fit within the given memory capacity and lowering the bandwidth re-

quirements. Morán-Fernández et al. [20] proposed the use of a lighter
procedure for the MI computation based on the usage of low-precision
fixed-point operations. Although it was originally designed for embed-

ded systems, Section 4.4 will describe how it was adapted for Nvidia
GPUs. A fixed-point representation with 𝑏𝑖 as the number of integer bits
and 𝑏𝑓 as the number of fractional bits was intended as an alternative
to the traditional floating-point 64-bit resolution.

Since MI parameters are typically represented in the logarithmic
domain, a look-up table is used to determine the logarithm of the prob-

ability of a particular event. The look-up table is indexed in terms of
number of occurrences of an event (individual counters) and the total
number of events (total counter), and stores values for the logarithms in
the desired fixed-point representation. To limit the maximum size of the
look-up table and the bit-width required for the counters, a maximum
integer number 𝑀 is assumed and the look-up table 𝐿 is precomputed
such that:

𝐿(𝑖, 𝑗) =
[
log(𝑖∕𝑗)

𝑞

]
𝑅

⋅ 𝑞, (8)

where [⋅]𝑅 denotes rounding to the closest integer, 𝑞 is the quantization
interval of the desired fixed-point representation (2−𝑏𝑓), log(⋅) is the
logarithm in base 2, and the counters 𝑖 and 𝑗 are in the range [0, 𝑀 −1].
We refer to [20] for more detailed information about the calculation of
this look-up table.

The total counter 𝑆 and the individual counters 𝑠𝑖
𝑗

are computed
using the Algorithm 1 given a set of specific data. We made the as-

sumption that there was some maximum integer number 𝑀 , where
𝑀 = 2(𝑏𝑓+𝑏𝑖) − 1. The algorithm first checks that all counters are within
bounds. Then, the total counter 𝑆 is computed as the sum of all of
them. However, it is important to check that 𝑆 is still within bounds. In
the case that 𝑆 ≥𝑀 , an index correction must be applied, and both the
total counter and all the individual counters are halved. Finally, the val-

ues of 𝑆 and 𝑠𝑖
𝑗

can be used to retrieve the log-probability low-precision
values from the look-up table.

4. CUDA implementation

As previously mentioned, GPUs are nowadays widely used in the
HPC field due to their high computational capabilities. MI computation
is a procedure with a high level of parallelism, so GPUs are a suitable
architecture to accelerate it.

The CUDA implementations for three MI-based methods (mRMR,
3

JMI and DISR) presented in this work are based on the sequential C
Journal of Parallel and Distributed Computing 190 (2024) 104901

Algorithm 1: Low-precision mutual information.

1 Input: Individual counters 𝑠𝑖
𝑗

and total counter 𝑆 ; look-up table 𝐿
2 for 𝑖, 𝑗 do

3 // maximum value reached?

4 if 𝑠𝑖
𝑗
=𝑀 then

5 // half counters (round down)

6 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
∕2 ∀𝑖, 𝑗

end

end

7 // sum of the individual counters

8 𝑆 ←
∑

(𝑠𝑖
𝑗
)

9 // ensure that 𝑆 is in range

10 while 𝑆 ≥𝑀 do

11 𝑆 ← 𝑆∕2
12 // revise index correction

13 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
∕2 ∀𝑖, 𝑗

end

14 // get the log probability from look-up table

15 𝑙𝑖
𝑗
←𝐿(𝑠𝑖

𝑗
, 𝑆) ∀𝑖, 𝑗

16 Return: 𝑙𝑖
𝑗

Fig. 2. High-level structure of the FS methods included in FEAST and cuFEAST,
for the selection of a subset 𝑆 with 𝑘 features from a dataset 𝐷.

counterpart methods included in the FEAST1 library, which are theo-

retically described in [7] and have been extensively tested and used
by scientists. Our implementations are gathered in a library named
cuFEAST. Note that these FS methods require discrete data, so the li-
brary also includes support to discretize continuous data using a binning
approach. Specifically, the range of values of each feature is split into
bins of constant size, where the number of bins must be indicated by the
user. The cuFEAST implementations accept as input datasets in ARFF,
CSV or LIBSVM formats, and share the common structure shown in
Fig. 2, with the following two steps:

1. Selection of the first feature. At the beginning, the set of selected
features 𝑆 is empty, so redundancy cannot be computed yet. Thus,
the value that is used as the score to select the first feature is the
relevance, which can be approximated as the MI between each fea-

ture and the class.

2. Selection of the other 𝒌− 𝟏 features. This part consists of a loop
that selects one more feature for the 𝑆 set in each iteration. At this
point, the algorithm has already selected at least one feature, so
more sophisticated metrics can be used for score computation (see
Section 3). Note that these advanced metrics take 𝑆 into account to
compute scores, as they try to minimize the redundancy with the
already selected features. Hence, there is a dependency between
iterations which does not allow for parallel execution (the scores of
iteration 𝑖 + 1 cannot be calculated until the feature corresponding
to iteration 𝑖 has been selected).
1 Available at https://github .com /Craigacp /FEAST.

https://github.com/Craigacp/FEAST

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Algorithm 2: Computation of all scores for an iteration of
mRMR, JMI and DISR in FEAST. Green lines correspond to the
mRMR algorithm only. Purple lines are exclusive to JMI and
DISR.

Input: Dataset 𝐷; subset of already selected features 𝑆 ; cache of
inter-feature scores 𝑃𝐶 ; cache of MI values with dataset class
𝑐𝑙𝑎𝑠𝑠𝑀𝐼

Output: Computed scores of features 𝑃 ; updated score cache 𝑃𝐶

1 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

2 𝑃𝑖 ← 𝑐𝑙𝑎𝑠𝑠𝑀𝐼𝑖
3 𝑃𝑖 ← 0
4 for feature 𝑋𝑗 ∈ 𝑆 do

5 if 𝑗 = |𝑆| − 1 then

6 // 𝑋𝑗 is the most recently selected feature

𝐿 ←𝑋𝑗

𝑃𝐶𝑗𝑖 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒(𝑋𝑖, 𝐿)
end

7 𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖∕|𝑆|
𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖

end

end

The focus of this work is the acceleration of the score computation
(dashed outline in Fig. 2) since it is the most computationally expensive
part of the algorithms. Furthermore, it is highly parallel as the calcula-

tion of the score is independent for each feature.

The computation of scores in the three methods (mRMR, JMI and
DISR) shares a common structure, which is shown in Algorithm 2. The
algorithm iterates over all the features of the dataset 𝐷 (loop of line 1)
to compute their scores 𝑃 . The scores are initialized (line 2) to the MI
of the active feature 𝑋𝑖 and the class (denoted by 𝑌 in the formulas of
Section 3) in mRMR, and to zero in JMI and DISR. Then, the inner loop
(line 4) iterates over each already selected feature 𝑋𝑗 , so the score 𝑃𝑖 is
updated depending on the information metric between 𝑋𝑖 and 𝑋𝑗 (the
metric depends on the selected algorithm).

Note that this pseudocode shows an optimization that was already
included in the base implementation of the FEAST algorithms, that is,
the usage of two caches:

• classMI (mRMR only) stores the MI between each feature in the
dataset and the class. These values are accessible at the beginning
of the algorithm since they were already computed to be used as
scores for the selection of the first feature.

• PC is a matrix that stores all the partial scores between each fea-

ture of the dataset and each previously selected feature. This opti-

mization heavily reduces the complexity of the code: as the scores
related to the previously selected features can be directly obtained
from the PC matrix, only the score related to the last selected fea-

ture must be calculated.

These caches are also used in cuFEAST. Moreover, the code has been
rearranged to later benefit from optimizations such as batch processing
and asynchronism (explained in detail in later sections). This rearrange-

ment is shown in Algorithm 3 and consists in the extraction of the
partial score computation to the outer level of the loops (lines 3-4),
so that computations for all the features in the dataset are grouped.

Fig. 3 shows the concrete operations involved in the computation of
the score of any feature 𝑋, the last selected feature 𝐿, and the dataset
class 𝑌 in each method. Note that MI is computed in the three methods,
but whereas in mRMR just the two features are involved, JMI and DISR
also use the class and their joint state, which are calculated in a previous
stage called merge arrays (“mA” in the figure). Finally, the computation
of the DISR scores involves an additional metric with respect to JMI,
that is, the joint entropy (𝐻) between the joint state of the features and
4

the dataset class (see Section 3.3).
Journal of Parallel and Distributed Computing 190 (2024) 104901

Algorithm 3: Computation of all scores for an iteration of
mRMR, JMI and DISR in cuFEAST (with the rearrangement).
Green lines correspond to the mRMR algorithm only. Purple
lines are exclusive to JMI and DISR.

Input: Dataset 𝐷; subset of already selected features 𝑆 ; cache of
inter-feature scores 𝑃𝐶 ; cache of MI values with dataset class
𝑐𝑙𝑎𝑠𝑠𝑀𝐼

Output: Computed scores of features 𝑃 ; updated score cache 𝑃𝐶

1 𝑙← |𝑆| − 1
2 𝐿 ←𝑋𝑙

3 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

4 𝑃𝐶𝑙𝑖 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒(𝑋𝑖, 𝐿)
end

5 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

6 𝑃𝑖 ← 𝑐𝑙𝑎𝑠𝑠𝑀𝐼𝑖
𝑃𝑖 ← 0

7 for feature 𝑋𝑗 ∈ 𝑆 do

8 𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖∕|𝑆|
𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖

end

end

Fig. 3. Operations involved in the computation of the score of an arbitrary
feature 𝑋𝑖 , where 𝐿 is the last selected feature and 𝑌 the dataset class.

In summary, we have three methods that share a common structure,
but differ in the calculations that are performed to compute feature
scores, which is the most computationally expensive part of the algo-

rithms. For this reason, we will focus on the adaptation of that part to be
accelerated with GPUs. Due to previous optimizations and code refac-

toring, the heaviest computation has been grouped in a single function,

whose parallelization will be explained in the following subsections.

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 4. Comparison of sequential and CUDA implementations of histogram cre-

ation.

Fig. 5. Comparison of sequential and CUDA implementations of histogram pro-

cessing for MI.

4.1. CUDA implementation for mRMR

As explained in Section 3.1, the mRMR algorithm uses the MI to
compute the feature scores. Due to the caching and code refactoring,
the operation that must be performed in parallel is the calculation of MI
between every not selected feature in the dataset and the last selected
one (lines 3 and 4 in Algorithm 3).

The calculation of the MI between one feature 𝑋 and the last se-

lected one (𝐿) can be divided into three steps:

1. Histogram creation. First, three histograms (i.e., counters of the
occurrences for the different values) are created: a unidimensional
histogram for 𝐿 (𝐶𝐿), a unidimensional one for 𝑋 (𝐶𝑋), and a
bidimensional one for the joint state of 𝑋 and 𝐿 (𝐶𝐿𝑋). See left
half of Fig. 4 (labeled as “Sequential”).

2. Conversion to probabilities. Then, all values in histograms 𝐶𝑋 ,
𝐶𝐿 and 𝐶𝐿𝑋 are divided by the number of samples to obtain prob-

abilities from counts, and are stored in 𝑃𝑋 , 𝑃𝐿 and 𝑃𝐿𝑋 , respec-

tively.

3. Histogram processing. Finally, the probability structures are pro-

cessed to obtain the MI between the two variables, as seen in
Equation (2). See left half of Fig. 5.

4.1.1. CUDA kernel

The mRMR implementation in cuFEAST includes only one kernel
that covers the three steps explained before. One CUDA block per fea-

ture is created, and the work for each MI calculation is divided among
the threads of the block as follows:

1. Histogram creation. Each thread 𝑇𝑡 works with the values corre-

sponding to a same position in the two variables (𝑋𝑡 and 𝐿𝑡), and
updates the histograms according to the read values (𝐶𝑋 [𝑋𝑡] and
𝐶𝐿𝑋 [𝑋𝑡][𝐿𝑡]). Note that it is not necessary to calculate 𝐶𝐿 for ev-

ery feature, as it corresponds to the last selected feature, which
is used for all the MI calculations. Therefore, performance is im-
5

proved by computing it only once and storing it in a memory that
Journal of Parallel and Distributed Computing 190 (2024) 104901

is accessible by CUDA threads for the third step. The CUDA ap-

proach to create the histograms is illustrated in the right half of
Fig. 4.

2. Conversion to probabilities. The conversion from counts to prob-

abilities is done in a “lazy” fashion. That is, instead of having the
values stored, their computation is delayed until the probabilities
are needed. This allows to reduce memory consumption since the
storage of three additional structures that use 64-bit data (i.e., 𝑃𝑋 ,
𝑃𝑌 and 𝑃𝑋𝑌 with float64) is avoided.

3. Histogram processing. In the CUDA kernel, the histograms are
divided among threads in a column fashion. That is, each thread
computes the partial MI of a value of the 𝐶𝑋 histogram, all 𝐶𝐿,
and the corresponding column of 𝐶𝐿𝑋 . For instance, a thread 𝑇𝑡

would process the partial MI with the value 𝐶𝑋 [𝑡], all 𝐶𝐿, and the
column 𝐶𝐿𝑋 [∗][𝑡] (see the right half of Fig. 5). Then, all threads
aggregate their partial solutions to achieve the total MI.

Note that, as there are several CUDA threads working concurrently,
the operations that update memory positions must be performed atom-

ically to keep a consistent memory model. Specifically, the CUDA func-

tion atomicAdd_block is used for histogram creation and the addi-

tion of the partial MI of each thread to the complete MI. Moreover,
to get consistency, the threads must be synchronized before advancing
from the histogram creation to its processing. This is achieved with the

__syncthreads() CUDA function.

As mentioned before, each thread is responsible for the computa-

tions of a position of the input features during the histogram creation,
and of a column of the bidimensional histogram for the calculation of
the partial MI. We have also seen that a single block is used to pro-

cess each feature, but the amount of threads per block is fixed for each
execution (selected by the user as input parameter). A cyclic approach
is applied to split the computation among threads: for a workload of
𝑊 items, each item 𝑊𝑛 is assigned to thread 𝑛 mod 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒. Note
that 𝑊 = #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 for the histogram creation, while 𝑊 = 𝑙𝑒𝑛(𝐶𝑋) =
𝑚𝑎𝑥(𝑋) for the processing.

Finally, the GPU memory used by the histograms has to be explic-

itly managed (allocated, initialized and freed). This introduces a certain
overhead, but it will be reduced with some optimizations described in
the following subsections.

4.1.2. Batch processing

Now that a kernel that computes the MI between two features has
been presented, the implementations need to repeat this calculation for
each feature in the dataset. Taking into account that one CUDA block
is in charge of the MI value for a certain feature (the total number
of features can be much higher than the maximum number of CUDA
blocks), three different approaches were identified to calculate the MI
between the last selected feature and all the not already selected ones:

1. Launch one kernel per feature. This would be the most naive ap-

proach, since it would consist of repeatedly resetting GPU memory
and launching the kernel with only one CUDA block. The main ben-

efit is that its implementation is quite simple (a for loop), but this
memory reset would introduce a really high overhead and it would
not take advantage of memory bandwidth.

2. Launch a single kernel for all features. The opposite approach
would be to rely on a single kernel call, with one block per fea-

ture. The implementation would be simpler, since the for loop is
avoided, but we would need to allocate a huge amount of GPU
memory at a time. Depending on the properties of the processed
dataset, this could even cause the execution to fail due to excessive
memory requirements.

3. Batched approach. This would be a trade-off between the two
previous options. We could try to reduce the average overhead by
using fewer kernels than the “one kernel call per feature” approach,

while reducing the impact of memory management (allocations

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 6. Conceptual comparison of runtimes and overheads of each kind of oper-

ation involved in the CUDA calculation of scores.

and frees) by having fewer features per kernel than with the “sin-

gle kernel call for all features” approach. However, this would lead
to an additional configuration parameter (the number of features
per batch) with a significant impact on performance that would
depend on the properties of each dataset.

Fig. 6 illustrates the differences among the approaches. Note that 𝐹
refers to the number of features in the dataset and 𝐵 to the batch size
(given that 1 < 𝐵 < 𝐹). Two bars are shown for each batch configura-

tion: the highest one shows a timeline view for the duration of each
operation, while the shortest one displays the aggregate times of each
kind of operation. The chart clearly shows that a smaller batch spends
less time with memory allocations and deallocations, while a larger one
reduces overhead and enhances kernel performance (it better exploits
GPU parallelism). It is also easy to see how the batched approach is an
intermediate case that, if balanced, can outperform both extreme cases
in overall runtime. Therefore, a batch size that provides a compromise
between low overhead highly parallel executions and low memory allo-

cations should be selected.

In order to achieve adaptability, the number of features per batch
is left as a configuration parameter to the user. This way, the execu-

tion can be tuned depending on the properties of the dataset and also
adapted to other CUDA architectures that potentially have different ra-

tios between computation and memory performance.

4.1.3. Custom GPU memory management

Even with the batched approach, there is still room to optimize
memory accesses. As explained before, we need to allocate and free
memory for the histograms of the features that are packed in each batch,
but these memory operations come with a performance overhead. The
cuFEAST implementation of mRMR includes a custom memory man-

agement system based on pools: instead of using cudaMalloc and

cudaFree at the beginning and end of each batch processing, a pool of
memory is allocated at the beginning and deallocated at the end of the
whole execution, and it is just reset before launching each batch kernel.

Note that this approach works because a top limit for the amount
of required memory per batch can be estimated beforehand. The maxi-

mum can be estimated as 𝐵×(𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋)) +𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋)) × 𝑙𝑒𝑛(𝐶𝐿) ×
𝑑, where 𝐵 is the batch size, 𝐶𝐿 is the histogram of the last selected
feature, 𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋)) is the maximum length of the histogram of any
variable 𝑋 in the dataset (usually equal to the #𝑏𝑖𝑛𝑠 used for dis-

cretization), and 𝑑 is the size (in bytes) of the data type used for the
6

histograms.
Journal of Parallel and Distributed Computing 190 (2024) 104901

Fig. 7. Comparison of the processing using a synchronous and an asynchronous
(with 𝑆 streams) approach.

Regarding memory requirements, cuFEAST uses uint16 for the his-

tograms, so these requirements are reduced to a half if compared to the
32-bit uint. Moreover, the original C implementation in FEAST saves
in memory both the histograms with counters (32-bit uint) and proba-

bilities (64-bit float64), so the real reduction is higher (from 96 bits to
just 16 bits per element). However, as a side effect, the maximum value
that can be represented is 216 − 1 = 65535, so it is possible that over-

flow occurs for datasets with #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 > 65535. This is only common
for the class histogram, since it usually takes values from a low amount
of possibilities (i.e., the number of classes). So, in order to avoid this
particular error, the class histogram still uses 32-bit uints.

Being able to compute the amount of memory needed by the his-

tograms of a feature with a simple operation based on its length helps
to optimize even more the behavior of the memory pool. It is common
that the actual size of the memory space required for the histograms
of some features is lower than the maximum. Therefore, there would
be allocated but uninitialized space in the pool. Since the computa-

tion of larger batches is more efficient (the drawback is the overload of
memory operations), cuFEAST uses this uninitialized space to fit more
features in the batch, allowing to compute more features without adding
memory operation overload.

4.1.4. Asynchronism

In a system with a GPU, there are usually three “units” that can work
simultaneously: host CPU, GPU compute engine, and GPU transfer en-

gine. cuFEAST uses CUDA streams to overlap the work of all units in
a pipelined structure. Specifically, the overlapped work is the prepara-

tion of the batch (CPU), the transfer of batch data (GPU transfer) and
the kernel execution (GPU compute). Fig. 7 shows a comparison of the
resource usage between a synchronous and an asynchronous approach.
The batches are distributed cyclically among streams: when using 𝑆
streams, a batch 𝐵𝑏 would be processed in the stream 𝑏 mod 𝑆 .

Ideally, the configuration that achieves the best performance would
be to use one stream per batch. But, in practice, the management of a
high number of streams increases memory consumption: each stream
needs its own memory space so that memory requirements rise linearly
with the number of streams. Therefore, the number of streams is a pa-

rameter that also impacts performance and, as it multiplies the required
memory allocation, the variations in performance will be linked to the
batch size (as will be shown in Section 5.3.1). Again, the number of
CUDA streams used for the asynchronism is left to the user as a config-

uration parameter, so that the execution can be tuned according to the
specific properties of each dataset and CUDA architecture.

4.1.5. Shared memory

In the kernel explained so far the histograms are stored in the global
memory of the GPU. This type of memory is the largest but slowest one
in the CUDA memory hierarchy, so cuFEAST tries to take advantage
of faster memories. This is the case of shared memory, since accesses
are about 10x faster than in global memory and it is accessible from
all the threads in each block (remember that cuFEAST launches one

block of threads per feature, so only that block would need to access its

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

own shared memory). However, besides being faster, shared memory is
much smaller than global (e.g., up to 64 KB per block for the Turing
microarchitecture), so it cannot be used for all data structures in all
scenarios.

A previous optimization, the usage of the uint16 data type for the
histograms, helps with the reduction of memory requirements, making
it possible to fit larger histograms in shared memory. The implemen-

tation follows an “adaptive” shared memory usage, which tries to fit
structures in it while there is remaining free space. The procedure con-

sists of the following steps:

1. cuFEAST obtains a structure with, among other information, the
amount of shared memory per block.

2. Then, for each feature in the batch, it checks which structures fit
in shared memory:

2.1. First, it checks the size of the bidimensional histogram, since
it is the most accessed one. If this histogram fits, it is created
and processed in shared memory.

2.2. Second, it checks for the unidimensional one.

3. Finally, the CUDA kernel uses global or shared memory depending
on the results from the previous steps.

Therefore, there are four possible scenarios (ordered from best to
worst performance):

1. Both histograms fit in memory.

2. The bidimensional histogram fits, but not both, so the unidimen-

sional one uses global memory.

3. The bidimensional histogram does not fit, so it uses global memory,
but the unidimensional one fits in shared memory.

4. Both histograms need more space than available in shared memory,
thus they are created in global memory.

Note that we first try to fit the largest histogram (the bidimensional
one) in shared memory, since it is the most accessed one. During their
creation, both the unidimensional and bidimensional histograms are
written NS times, where NS is the number of samples in the dataset.
However, the difference appears during the computation of the MI,
since all positions of both structures are read. Therefore, the bidimen-

sional histogram should be prioritized to use shared memory.

We have previously seen how the maximum amount of required
memory per feature (i.e., per CUDA block) can be calculated. Note that
the size of the histograms is limited by the bins used for the discretiza-

tion, so the user can assert that shared memory will be used for both
histograms when (#𝑏𝑖𝑛𝑠 + #𝑏𝑖𝑛𝑠2) × 𝑑 < 𝑠ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘, where
𝑑 is equal to 16 bits and 𝑠ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 depends on the GPU
microarchitecture.

Furthermore, shared memory can work together with the custom
memory management (see Section 4.1.3) to improve performance even
further. When the histograms of a certain feature fit in shared memory,
they do not consume any space of the allocated pool, so that space can
be used to pack additional features in the batch, improving its workload.
The implementation works as follows:

• Host side. An offset to a pointer (offset_pointer) is assigned
to the CUDA block to know what space to use. When computing
the offsets and memory sizes of each feature, if a histogram fits in
shared memory, the pointer is set to null. Otherwise, it stores the
address of global memory that the block will use.

• CUDA kernel side. When the CUDA block starts the execu-

tion, it checks the value of the offset_pointer. If it is null,
then shared memory is initialized (in parallel) and used for
the histograms. Otherwise, the memory area pointed by off-
7

set_pointer (which is already initialized) is used.
Journal of Parallel and Distributed Computing 190 (2024) 104901

Algorithm 4: Computation of the merged state 𝑋𝐿 of two vari-

ables 𝑋 and 𝐿.

Input: Feature 𝑋; last selected feature 𝐿; number of samples 𝑁𝑆

Output: Merged state 𝑋𝐿

1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← (𝑚𝑎𝑥(𝑋), 𝑚𝑎𝑥(𝐿))
2 𝑚𝑎𝑝 ← 𝑧𝑒𝑟𝑜𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)
3 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 ← 0
4 for index 𝑖 ∈ [0, 𝑁𝑆 − 1] do

5 𝑝𝑜𝑠 ← (𝑋𝑖, 𝐿𝑖)
6 if 𝑚𝑎𝑝𝑝𝑜𝑠 = 0 then

// first appearance of the state

7 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 + 1
8 𝑚𝑎𝑝𝑝𝑜𝑠 ← 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠

end

9 𝑋𝐿𝑖 ←𝑚𝑎𝑝𝑝𝑜𝑠

end

4.1.6. Complexity analysis

Although the mRMR algorithm is too dependent on the properties
of the dataset, we can estimate its complexity. First, the number of
CUDA blocks that are executed can be expressed as 𝑂(𝑘 ∗ 𝐹), where 𝑘
is the number of features to select and 𝐹 the number of features in the
dataset. Then, the complexity of the workload of each block is given by
Θ(NS) +𝑂(#bins2), where 𝑁𝑆 is the number of samples in the dataset
and #𝑏𝑖𝑛𝑠 the number of bins used for the discretization. Note that the
first term, Θ(NS), corresponds to the creation of the histograms, and the
second one, 𝑂(#bins2), to their processing.

Therefore, the overall complexity can be expressed as 𝑂(𝑘 ∗ 𝐹) ∗
(Θ(NS) +𝑂(#bins2)).

4.2. CUDA implementation for JMI

It was previously explained that the three methods addressed in
this work (mRMR, JMI and DISR) share a common structure (see Algo-

rithms 2 and 3). However, JMI and DISR have an additional step before
the MI computation (see Fig. 3). While in mRMR the MI was computed
between two features of the dataset, in JMI and DISR there are three
features involved. Hence, four steps arise in JMI:

1. Merge arrays. Two features must be merged in order to obtain a
new one that represents the “joint” state of both variables. For a
feature 𝑋 and the last selected one 𝐿, we refer to the merged state
as 𝑋𝐿.

2. Histogram creation. Same as in mRMR, but instead of using vari-

ables 𝑋 and 𝐿, the merged one 𝑋𝐿 and the dataset class 𝑌 must
be used.

3. Conversion to probabilities. Same as in mRMR.

4. Histogram processing. Same as in mRMR.

First, we need to understand how the original C function to merge
arrays (already presented in Fig. 3) works in FEAST. This operation is
used to compute the joint state of two variables, which is then used to
calculate the JMI score. Each unique pair of 𝑋 and 𝐿 constitutes a state
of 𝑋𝐿 (i.e., 𝑋𝐿𝑖 represents (𝑋𝑖, 𝐿𝑖)). Note that 𝑋𝐿 will therefore have
the same length as 𝑋 and 𝐿 (the number of samples of the dataset,
denoted by 𝑁𝑆).

In terms of implementation, the computation of the joint state of
two batches needs a bidimensional memory structure (“merge map”
from now on). This way, cuFEAST can track whether each pair (𝑋𝑖, 𝐿𝑖)
appears more than once. That is, each possible combination of values of
𝑋 and 𝐿 is represented univocally by one and just one position of the
map. Note that the map needs to have a dimension of 𝑚𝑎𝑥(𝑋) ×𝑚𝑎𝑥(𝐿).

The procedure to compute 𝑋𝐿 is detailed in Algorithm 4.

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 8. Flow diagram for the critical read/read-and-update operation used in
the CUDA implementation of merge arrays.

4.2.1. CUDA kernel

A naive CUDA approach for JMI would consist of dividing the work-

load into two kernels. First, all the 𝑋 features would be merged with
𝐿 to create a new dataset of merged features, and then a second ker-

nel would compute the MI as in mRMR. However, this approach would
increase the overhead of the kernel launches, as well as memory re-

quirements.

Therefore, a custom operation that joins the first two steps of JMI
into a single one was developed, merging the features “on the fly” and
contributing to the histogram creation. This operation avoids having to
allocate an extra structure with the same size of the dataset, and reduces
global memory reads and writes.

The CUDA kernel for JMI implements all the steps involved in the
computation of the scores in just two stages:

• Merge arrays. Each thread 𝑇 is responsible for the same position
in both variables (𝑋𝑡 and 𝐿𝑡). Once read, the values of the vari-

ables are used to compute the position in the merge map. This map
is read (and updated if the state appears for the first time), and this
way the value of the joint state 𝑋𝐿𝑡 is known. However, as this
value is read only once for the histogram creation, instead of stor-

ing it, the thread updates the histograms accordingly (i.e., from the
values 𝑋𝐿𝑡 and 𝑌𝑡).

• Histogram processing. It is implemented as for mRMR. Remember
that a synchronization is required before starting this stage.

The creation of the merge map is a critical task, since several threads
can try to access the same position of the map simultaneously. There-

fore, these memory operations must be performed atomically. A novel,
fast, and lightweight atomic operation has been developed to reduce
the synchronization overhead. This procedure is illustrated by the dia-

gram shown in Fig. 8 and detailed in Algorithm 5. This operation avoids
heavier synchronization functions (such as kernel-level) and reduces
memory usage and the complexity of using mutexes. Each map posi-

tion is written at most once (when its value is 0, as shown in line 6
of Algorithm 4), and then race conditions must be avoided only when
two threads reach an unused position for the first time. The atomicCAS
: (address, compare, value) → (old) CUDA function is used for it. This
operation computes atomically23:

*address = ((old == compare) ? value : old)

and returns old. Two of the parameters are simple. On the one hand,
the address is already known. On the other hand, compare is set to 0 as
the map must only be written when the original value is still 0.

However, working with old and value is more tricky. In order to track
the new states, a counter (𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠) is used, which must be shared

2 Note that CUDA atomic operations are not available for architectures prior
to Kepler.

3 For the implementation, the atomic operation variants with a “_block”
suffix were used because their performance is better and data consistency is
8

maintained since they are atomic at a block scope.
Journal of Parallel and Distributed Computing 190 (2024) 104901

Algorithm 5: Concurrent-safe implementation of merge arrays
for a thread 𝑇𝑡.

Input: Feature 𝑋; last selected feature 𝐿; number of samples 𝑁𝑆 ;
shared merge map 𝑚𝑎𝑝; shared state counter 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠

Output: Safe value of the joint state 𝑋𝐿𝑡

1 𝑝𝑜𝑠 ← (𝑋𝑡, 𝐿𝑡)
2 repeat

// atomically read position

// try to set it to “being initialized” if “uninitialized”

3 𝑣 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐶𝐴𝑆(𝑚𝑎𝑝𝑝𝑜𝑠, 0, 𝑁𝑆 + 1)

// retry if position was “being initialized”

until 𝑣 >𝑁𝑆

4 if 𝑣 = 0 then

// position is “being initialized” by 𝑇𝑡 (current thread)

// add new state - atomic

// other thread could be doing the same for a different 𝑝𝑜𝑠
5 𝑣 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑(𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠, 1)

// 𝑇𝑡 can safely update the map position, no other threads

// will write it
6 𝑚𝑎𝑝𝑝𝑜𝑠 ← 𝑣

else

// nothing to do; position already initialized

end

// now 𝑣 holds the value of 𝑋𝐿𝑡 and can be used safely

among CUDA threads. Therefore, two shared variables (the map posi-

tion and the counter) must be updated at once every time a thread finds
a new state, so the atomicCAS function is not enough. To solve this prob-

lem, the memory position is used as a mutex to avoid race conditions.
This way, when a thread reaches a position, its value can be “unini-

tialized”, “being initialized” or “already initialized”, and its action has
to be “initialize the position”, “wait until position is initialized” or “do
nothing and continue”, respectively. Since the map is set to zero at the
beginning, a position that stores a zero can be considered as “uninitial-

ized”. However, other values are necessary to represent the other two
states. When a state appears for the first time, the merge map saves the
state index (which starts at one to avoid confusion with an “uninitial-

ized” position). Note that the counter must also be updated atomically
(in this case with atomicAdd). So, each position of the map stores the in-

dex of a distinct joint state, and the number of distinct states is limited
by the number of samples (a used position will hold a value in [1, 𝑁𝑆]).
Therefore, any map position with a value in that range will be consid-

ered as “already initialized”. Finally, 𝑁𝑆 + 1 is used to represent the
“being initialized” state.

4.2.2. Batch processing and asynchronism

The same approach for batch processing and asynchronism already
explained in Sections 4.1.2 and 4.1.4, respectively, has been applied
to JMI. The only difference is that this method needs an additional
memory structure (the merge map) and so the optimal batch size might
vary from mRMR.

4.2.3. Custom GPU memory pool

The memory pool and its custom management presented for mRMR
in Section 4.1.3 can also be applied to JMI. However, due to the fact
that there is an additional step (merge arrays) previous to the MI com-

putation, there is an aspect that must be taken into account. While for
mRMR the size of the histograms can be calculated in advance before
launching the kernel, it is not possible for JMI due to the fact that the
size depends on the outcome of the merged array. Thus, the optimiza-

tion of packing more features per batch to further improve performance
cannot be applied here since we cannot assure whether allocated mem-
ory of the pool is left unused.

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Table 1

Maximum theoretical sizes of the data structures used in each algo-

rithm for a given number of samples and number of bins. Sizes are
indicated in number of elements.

𝑁𝑆 #𝑏𝑖𝑛𝑠 mRMR JMI

1D 2D map 1D 2D

2,000 64 64 4,096 4,096 2,000 128,000

128 128 16,384 16,384 2,000 256,000

256 256 65,536 65,536 2,000 512,000

20,000 64 64 4,096 4,096 4,096 262,144

128 128 16,384 16,384 16,384 2,097,152

256 256 65,536 65,536 20,000 5,120,000

However, an upper bound must be calculated in order to know
the total memory size allocated for the pools. As mentioned above,
the size of the histograms depends on the merged array, specifically
on its maximum value. Given a feature 𝑋 and the last selected one
𝐿 with 𝑁𝑆 samples, we already know that the resulting joint state
𝑋𝐿 also has length 𝑁𝑆 . Moreover, the merge map has a position
for each possible combination of values between 𝑋 and 𝐿, so its size
would be 𝑚𝑎𝑝_𝑠𝑖𝑧𝑒 = 𝑚𝑎𝑥(𝑋) ×𝑚𝑎𝑥(𝐿). As previously seen, during the
merge arrays step the state values are assigned sequentially, so we
know that 𝑚𝑎𝑥(𝑋𝐿) is a value between one (all states are equal) and
𝑚𝑖𝑛(𝑁𝑆, 𝑚𝑎𝑝_𝑠𝑖𝑧𝑒) (all states are different).

Now, the maximum size of the histograms can be calculated. Re-

member that in JMI the score of a feature 𝑋, given the last selected one
𝐿, is computed as the MI between the class 𝑌 and 𝑋𝐿 (the joint state
of 𝑋 and 𝐿). The size of the bidimensional histogram can be computed
as the product of the sizes of the unidimensional ones. That is, the one
of the class 𝑌 (size 𝑚𝑎𝑥(𝑌)), and the one of the joint state 𝑋𝐿 (size
𝑚𝑎𝑥(𝑋𝐿) =𝑚𝑖𝑛(𝑁𝑆, 𝑚𝑎𝑥(𝐿) ×𝑚𝑎𝑥(𝑋))). Therefore, the maximum size
of the bidimensional histogram would be:

𝑚𝑎𝑥(𝑌) ×𝑚𝑖𝑛(𝑁𝑆,𝑚𝑎𝑥(𝐿) ×𝑚𝑎𝑥(𝑋)) (9)

A comparison of the maximum sizes for each data structure when
using different numbers of bins and samples is provided in Table 1.

Due to the discretization, the maximum value of a feature is lim-

ited by the number of bins (#𝑏𝑖𝑛𝑠). Therefore, the required memory
for the bidimensional histograms of a batch of 𝐵 features would be
𝐵 × 𝑚𝑎𝑥(𝑌) × 𝑚𝑖𝑛(𝑁𝑆, #𝑏𝑖𝑛𝑠2) × 𝑑, where 𝑑 is the data size (16 bits).
Note that 𝑚𝑎𝑥(𝑌) is constant for the dataset, so cuFEAST precomputes
and uses it instead of its theoretical maximum of #𝑏𝑖𝑛𝑠.

4.2.4. Shared memory

cuFEAST modifies the “adaptive” approach explained for mRMR in
Section 4.1.5 so that it can efficiently work with JMI. The main differ-

ence is that JMI has an additional memory structure (the merge map)
that can also be stored in shared memory. Obviously, the ideal case
would be to fit all three structures (the merge map and the two his-

tograms) in shared memory, but, due to the large size of the merge map
and the bidimensional histogram, mostly only one of them fits. The
cuFEAST implementation of JMI gives the highest priority to the merge
map as this worked best in most of the scenarios we tested. Therefore,
the adaptive strategy in JMI tries to fit the structures in shared mem-

ory in this order: merge map, bidimensional histogram, unidimensional
histogram.

4.2.5. Complexity analysis

The complexity of the JMI algorithm also depends on the input data,
even more critically than mRMR. The number of CUDA blocks is the
same as in mRMR, 𝑂(𝑘 ∗ 𝐹), where 𝑘 is the number of features to select
and 𝐹 the number of features in the dataset. However, the workload
of each block is different now, since JMI includes the step of merg-

ing arrays. The complexity of the work performed by each CUDA block
9

is Θ(NS) +𝑂(#bins ∗ min(NS, #bins2)). The first term corresponds to the
Journal of Parallel and Distributed Computing 190 (2024) 104901

Fig. 9. Comparison of sequential and CUDA implementations of histogram pro-

cessing for H.

array merging and histogram creation, and the second term to the pro-

cessing of histograms.

Therefore, the overall complexity would be 𝑂(𝑘 ∗ 𝐹) ∗ (Θ(NS) +
𝑂(#bins ∗ min(NS, #bins2)).

4.3. CUDA implementation for DISR

As previously explained, the DISR method works similarly to JMI,
but the computation of the entropy (H) is also necessary (see Fig. 3).
A major advantage is that the entropy, besides having less arithmetic
complexity, makes use of one of the structures that are also generated
to calculate the MI: the bidimensional histogram. Fig. 9 shows the con-

ceptual differences between the sequential and CUDA implementations
of the entropy calculation (compare with Fig. 5 to see the implemen-

tation differences with the histogram processing for MI). Since both MI
and H are needed for DISR, cuFEAST uses the same bidimensional his-

togram for the computation of both metrics.

The implementation of DISR is, therefore, almost the same as JMI.
The only difference is reflected in the modification of the CUDA kernel,
so that the threads compute both MI and H from the created histograms.
Apart from that, in order to maintain consistency with the mRMR and
JMI kernels, DISR returns only one value per feature (instead both MI
and H). This value is 𝑀𝐼

𝐻
, as can be seen in Equation (5). Note that, due

to their only slight differences, the complexity of DISR is the same as
that of JMI (see Section 4.2.5).

4.4. Adaptation to fixed point

Section 3.4 introduced a variant of the MI calculation for fixed-point
data. This idea was presented in [20] for low-end devices (e.g., wear-

ables), but it can potentially help to enhance performance on modern
Nvidia GPUs. This approach consists in avoiding the high computational
cost of logarithms and floating-point arithmetic by using a look-up table
(i.e., memory accesses) and integer arithmetic.

As explained in Section 3.4, the look-up table is key to compute the
MI with fixed point, so it must be created beforehand. Nevertheless,
the cuFEAST implementation includes the following modifications with
respect to the original approach [20], as GPUs have different character-

istics to low-end devices:

• No limit on table size. Low-end devices have less memory than
modern Nvidia GPUs, so cuFEAST can afford to have larger tables
and reduce some computation overhead in the precision conver-

sion. Specifically, counter halving and index correction (see [20]

for a detailed explanation of these terms) can be suppressed. Note
that, due to this change, the table in the GPU will be unidimen-

sional since only one value (the number of samples of the dataset,
𝑁𝑆) is used as secondary indexing term (variable 𝑗 is always equal
to 𝑁𝑆 in Equation (8)). Therefore, the look-up table will have a
size of 𝑁𝑆 elements.

• Computation instead of precomputation. The authors of [20]
proposed to calculate the look-up table only once for each device,

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Table 2

Characteristics of the datasets (size is calculated using 8B
per value).

#Features #Samples #Classes Size

MNIST 780 60,000 10 0.36 GB

Epsilon 2,000 400,000 2 6.96 GB

RCV1 47,236 20,242 2 7.12 GB

News20 62,061 15,935 20 7.37 GB

store it on disk and read it prior to each FS execution. However,
since the computation of the table is cheap when performed on HPC
systems, cuFEAST computes it at the beginning instead of reading
a cached copy stored on disk.

• No fixed-point data types. The original approach represents the
elements of the table with a fixed-point data type. However, such
type does not directly exist in the GPU hardware, so the algorithms
must be adapted to work with integers. This was achieved by de-

laying the conversion from integer to fixed point from the table
creation to the use of the data. Specifically, Equation (8) is modi-

fied as follows:

𝐿′(𝑖, 𝑗) =
[
log(𝑖∕𝑗)

𝑞

]
𝑅

(10)

Then, when needed for the computations, data is converted back to
floating point as:

𝑑𝑓𝑙𝑜𝑎𝑡 =𝐿′(𝑖, 𝑗) ⋅ 𝑞 (11)

• Adaptive precision distribution. The original approach is generic
for the use of an arbitrary number of bits for both the integer and
fractional parts of the number. However, cuFEAST only implements
fixed-point algorithms with uint16 data for the look-up table. This
choice was based on the experimental evaluation of [20], which
proves that a 16-bit width provides accuracy high enough when
compared to high-precision floating-point values, while keeping a
low number of bits. Nevertheless, the 16 bits must still be split
between the integer and fractional parts. cuFEAST includes a so-

lution consisting of a dynamic approach where the precision is
determined by the dataset properties, in order to achieve the best
possible results. That is, it chooses a precision with no more than
the bits needed to represent the highest possible value in order to
leave as many bits as possible for the fractional part.

The computations that use logarithms are executed within the GPU
kernels, whose adaptation to fixed point required to make the look-

up table available in memory to the CUDA threads. Consequently, it is
transferred to the global memory of the device. Then, the fixed-point
approach allows to substitute multiplications, divisions and logarithms
by additions, subtractions and memory accesses.

5. Experimental evaluation

Four publicly available datasets with different characteristics (sum-

marized in Table 2) have been used for the experimental evaluation.
They were all obtained from the LIBSVM collection [8]. MNIST and

Epsilon are multiclass and biclass datasets, respectively, with more
samples than features, while RCV1 (biclass) and News20 (multiclass)
present more features than samples. Since the values of these datasets
are continuous a discretization with 128 bins (a quite common scenario)
has been applied. Although additional experiments with 256 bins were
run, they are not included in this section for simplicity as the conclu-

sions drawn from them are similar.

Two Nvidia GPUs from different generations (Turing T4 and Ampere
A100), whose characteristics are shown in Table 3, were used for the
experimental evaluation. The GPUs are installed in two CPU systems,
10

Pluton and FinisTerrae III, whose characteristics are listed in Table 4.
Journal of Parallel and Distributed Computing 190 (2024) 104901

Table 3

Characteristics of the GPUs.

T4 A100

Microarchitecture Turing Ampere

Number of SMs 40 108

Number of cores 2560 6912

Core frequency (MHz) 585 765

Global memory size (GB) 16 40

Shared memory size (KB) 64 163

Memory bandwidth (GB/s) 320 1555

Table 4

Characteristics of the systems containing the GPUs.

Pluton FinisTerrae III

CPU 2 x Intel Xeon Silver 2 x Intel Xeon

4216 Cascade Lake-SP Ice Lake 8352Y

Cores/CPU 16 32

Total Cores 32 64

RAM 256 GiB 256 GiB

GPU Nvidia T4 Nvidia A100

These CPUs were also used to execute the sequential and multithreaded
counterparts of mRMR, JMI and DISR available in FEAST4 and Parallel-

FST [4], respectively, whose performance will be compared to that of
cuFEAST. The sequential implementations have also been used to prove
the correctness of the numerical results as our CUDA codes select ex-

actly the same features. We can assume that the results are correct as
FEAST has been widely used and tested by researchers from different
fields of computational science. The output of the low-precision fixed-

point approaches has been compared to that of a new sequential C++
implementation developed by the authors following the instructions ex-

plained in [20]. This paper includes a detailed accuracy evaluation of
the methods with low precision, concluding that the use of 16 bits in
FS methods (as in our CUDA fixed-point implementations) is enough to
select features with the same quality as double-precision versions.

The number of selected features has been fixed to 200. This number
is high enough to show the impact of discarding the selected features
from the candidate list, and not too large to avoid selecting an extremely
high number of features, which will never be the case in a real scenario.
Additionally, the speedup of the CUDA-based implementations with re-

spect to the sequential counterparts does not depend on the number of
selected features as the parallel approach is repeated for every feature
selected (see dashed outline in Fig. 2).

The CUDA implementations have been executed with different con-

figurations of batch size, number of streams, and number of threads
per block. The speedups shown in the following subsections were cal-

culated using only the runtime of the best configuration, but some
insights about the impact of these parameters will be provided in Sec-

tion 5.3. Also note that all the GPU times shown in this section include
the time for data transfers between GPU and CPU, as well as the time
needed to create the look-up table in the case of fixed-point versions.
We have repeated five times each experiment, discarding the maximum
and minimum values, and providing as runtime for each configuration
the average of the three intermediate results. This prevents outliers from
influencing our evaluation. It means that more than 60,000 executions
were performed in this experimental evaluation.

Regarding the fixed-point version of the algorithms, Table 5 shows
the fractional bits, sizes and generation times of the look-up tables for
each dataset and CPU. Note that generation times are shown in millisec-

onds and are negligible when compared with FS runtimes.
4 The latest available version of FEAST (v2.0.0) was used.

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 10. Comparison of the runtimes with and without exploiting the shared memory of the GPUs. Darker colors are used for versions that do not exploit shared
memory.
Table 5

Bit distribution, sizes and generation times of the look-up tables for low-

precision fixed-point executions.

Dataset Fractional bits Table size (KB) Time (ms)

Cascade Lake-SP Ice Lake

MNIST 12 117.19 1.70 1.24

Epsilon 11 781.25 10.50 7.25

RCV1 12 39.54 0.66 0.54

News20 12 31.12 0.78 0.46

5.1. Impact of shared memory

The mRMR, JMI and DISR methods have been adapted to exploit
the shared memory available in the GPUs, which involved significant
modifications to their implementations, as was explained throughout
Section 4. The experimental evaluation started by proving that the use
of shared memory is beneficial for the MI-based FS methods. Fig. 10

compares the runtimes (in seconds) of the three implementations that
only use global memory versus the three that exploit shared memory,
for the two GPUs, the four datasets, and the double-precision and fixed-

point versions. As mentioned above, the runtimes shown in the graphs
are those obtained with the best combination of batch size, number of
streams, and number of threads per block for each case.

The main conclusion that can be drawn from these results is that
the version with shared memory is clearly beneficial. Its impact on
11

performance heavily depends on the hardware, the method, and the
characteristics of the dataset. For instance, on the A100 GPU it is on av-

erage 32% faster than the version that only uses global memory, while
this percentage drops to 21% for the T4 GPU. The reason is that the
A100 has much more shared memory than the T4 (see Table 3). Re-

garding the methods, the use of shared memory has a greater impact
for mRMR (on average, 49% faster than the global memory version),
while for JMI and DISR the average benefit remains at 16% and 15%,
respectively. This difference can be explained because mRMR can better
exploit the memory pools, as its implementation is able to use uninitial-

ized space to fit more features in the batch (see Section 4.1.3). Another
conclusion is that the higher the number of samples in the dataset, the
higher the benefit of using shared memory. For instance, the average
runtime reduction over the global memory version when working with
the Epsilon dataset (400,000 samples) reaches 41%, while it drops
to 20%, 22% and 23% when selecting features of MNIST, RCV1 and

News20, respectively. Finally, we can also conclude that the precision
of the algorithms (double or fixed) does not influence the impact of
using shared memory.

5.2. Comparison with the state of the art

Once we have proved that the CUDA implementation that makes use
of shared memory obtains the best performance, this section compares
it with the state of the art. First, Fig. 11 shows the speedup obtained
by this version of the CUDA codes over their sequential counterparts
available in FEAST. The speedups for each GPU are calculated related

to the sequential time when running the FEAST implementations on

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 11. Speedups obtained by the CUDA implementations (using shared memory) over the sequential C codes.
Table 6

Runtime (in seconds) of the sequential implementations available
in FEAST (C version).

mRMR JMI DISR

Pluton MNIST 44.79 93.62 143.40

(Cascade Lake-SP) Epsilon 647.35 1317.74 1971.80

RCV1 943.51 1396.39 2031.61

News20 1025.16 1372.20 2064.09

FinisTerrae III MNIST 39.37 66.54 104.40

(Ice Lake) Epsilon 514.01 1034.83 1560.73

RCV1 1043.86 1253.14 2010.77

News20 1129.98 1316.60 2091.47

their corresponding host CPUs (Cascade Lake-SP for the T4 and Ice Lake
for the A100). Table 6 shows these sequential runtimes (in seconds)
for each CPU, method and dataset. All the experiments for the CUDA
version with low-precision fixed point were executed with 16 bits, as
suggested in [20].

The results shown in Fig. 11 prove that our CUDA implementations
are significantly faster than the original sequential codes in all scenar-

ios. The magnitude of the acceleration depends on several factors:

• The GPU hardware. The speedups achieved on the A100 (132x
on average) are always higher than on the T4 (48x on average).
This proves that the CUDA implementations efficiently exploit the
resources available in modern GPUs. As can be seen in Table 3, the
A100 not only includes more cores, but also these cores and the
memory transfers are faster (higher memory bandwidth).

• The FS method. Although mRMR is the fastest method even in its
sequential implementation, it is the one that better adapts to the
GPU, obtaining an average speedup of 118x (with a 283x peak for
the Epsilon dataset on the A100). Nevertheless, DISR and JMI are
also very suitable for GPUs, reaching speedups of up to 193x and
127x, respectively.

• The input dataset. The highest speedups are achieved for Ep-
silon (137x on average), the dataset with the largest number of
samples. The behavior of RCV1 and News20 is quite similar, with
average speedups of 89x and 74x, respectively, while MNIST ob-

tains the worst results (average speedup of 59x). The reason is not
a poor implementation of the methods but the low computational
requirements for the analysis of this dataset (it is the smallest one).
Note that all CUDA implementations complete the FS on MNIST in
less than three seconds.

• The precision. The low-precision fixed-point versions of the algo-
12

rithms are faster than their double-precision counterparts in 94%
of the experiments. The low-precision version achieves an aver-

age improvement in runtime of 23%, 6% and 8% for mRMR, JMI
and DISR, respectively. Note that the runtime improvement is not
impressive, since this optimization not only involves changing the
data type, but also introduces suboptimal memory accesses (ran-

dom reads). Furthermore, the optimization only applies to a limited
section of the program, so the speedup of the entire algorithm is
less than that of the optimization itself.

Summarizing, the CUDA implementations presented in this paper
efficiently exploit the GPU hardware and are able to obtain speedups
of up to 283x and 128x when executing the mRMR method with 16-

bit fixed point over the Epsilon dataset on the A100 and T4 GPUs,
respectively. Regarding the runtime, the FS was completed in less than
20 seconds for any method and dataset on the A100, and in around one
minute in the worst case for the T4, which is a huge reduction compared
to sequential runtimes of up to 35 minutes.

We have compared the performance of the GPU versions in cuFEAST
with the multithreaded versions available in our Parallel-FST li-

brary [4]. The number of cores available varies by system and the
multithreaded versions were run with one thread per core (32 threads
in Pluton and 64 threads in FinisTerrae III, according to Table 4).
The speedups of the cuFEAST and Parallel-FST versions with respect
to the sequential version on the corresponding host system are shown
in Fig. 12. Although the multithreaded versions achieve high parallel
efficiency, the further optimizations present in cuFEAST make the GPU
versions achieve far superior speedups.

As mentioned in Section 2, CUDA-JMI [16] is, up to our knowledge,
the only available implementation in the state of the art for FS on GPUs.
Table 7 compares the runtime (in seconds) of CUDA-JMI and our novel
JMI implementation on the two GPUs for the four datasets, only for the
double-precision version, as CUDA-JMI is not able to work with low-

precision (16 bits) fixed point. First, note that CUDA-JMI failed when
working with the MNIST dataset due to an inefficient use of memory
that makes it run out of memory. For the other datasets our imple-

mentation is, on average, around 11 and 41 times faster on the T4 and
A100, respectively, proving that it is better suited to the most modern
and powerful GPUs. This runtime improvement is due to the exploita-

tion of the GPU: while CUDA-JMI just computes the MI, cuFEAST tries
to maximize the use of the GPU by also offloading the merge arrays
stage. Moreover, cuFEAST includes optimization techniques (those ex-
plained in Section 4.2) that are not present in CUDA-JMI.

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 12. Comparison of the best speedups obtained by the CUDA implementations (cuFEAST) and the multithreaded versions (Parallel-FST) over the sequential C

codes.

Table 7

Runtime (in seconds) of CUDA-JMI and our novel
double-precision implementation of JMI (“-” is a
failed out-of-memory execution).

Dataset GPU Time (s)

CUDA-JMI cuFEAST JMI

MNIST T4 – 2.80

A100 – 1.17

Epsilon T4 528.24 27.55

A100 475.47 8.19

RCV1 T4 366.73 44.70

A100 531.64 14.187

News20 T4 378.50 67.38

A100 545.56 19.77

5.3. Selection of the configuration parameters

As previously explained, the experimental evaluation carried out
for this work has been very extensive, with around 60,000 executions,
testing different configurations of batch size, number of streams and
number of threads per block. However, all the runtimes presented up
to now are the best ones for each scenario (i.e., using the best configu-

ration). In this section we provide some insight about which are these
best configurations.

5.3.1. Batch size and streams

The first version of our CUDA FS code introduced the configuration
parameter of “block size”, that is, the number of threads that work in
parallel in a block of a CUDA kernel (remember that just one block
per feature is launched). However, due to the amount of configuration
parameters and variability in test executions (distinct datasets, microa-

chitectures, etc.), it is difficult to isolate the impact of the block size.
Therefore, we have initially tried to find a good configuration for the
batch size and number of streams, and then, select the block size that
works best for that case. We introduce the “normalized speedup” met-

ric to provide a fair comparison between configurations, calculated as
follows:

1. The speedup of each tested configuration is calculated with re-

spect to the sequential implementation available in FEAST as 𝑆cfg =
𝑡𝑖𝑚𝑒𝐹𝐸𝐴𝑆𝑇

𝑡𝑖𝑚𝑒cfg
.

2. Speedups are grouped by GPU type, dataset, algorithm and preci-
13

sion.
3. Speedups are normalized within each group. That is, for a speedup
of a given configuration 𝑆cfg in a group 𝑔, we compute the normal-

ized speedup metric as 𝑆′
cfg = (𝑆cfg −𝑚𝑒𝑎𝑛𝑔)∕𝑠𝑡𝑑𝑔 . This transforms

each speedup in a value that can be interpreted as how well a
configuration performs compared to the others in the same group,
while maintaining that value in a common range among all groups.

Figs. 13 and 14 show the normalized speedups for configurations
of different batch sizes and number of streams with double precision
and low-precision fixed point, respectively. Within each figure, the re-

sults are also separated by GPU and algorithm. Note that each square
of the heatmap (configuration with a specific batch size and number
of streams) aggregates the average normalized speedups for the non-

mentioned parameters (i.e., dataset and block size). The figures clearly
show the negative speedup correlation between using a high/low num-

ber of streams and a low/high batch size. In order to understand this
correlation, we will examine the advantages and drawbacks of the cases
in each sector of the heatmaps:

• Top-left: many streams, small batches. The code is capable of
achieving a good level of asynchronism since there are lots of
streams and low workload for each batch. Furthermore, the amount
of memory that needs to be allocated for the pools is not excessive.

• Top-right: many streams, large batches. The amount of memory
required for the pools is so high that the overhead it introduces
highly impacts runtime.

• Bottom-left: few streams, small batches. The amount of memory
required for the pools is really low, but there is a high amount of
kernel launches which introduces some overhead that influences
the overall runtime.

• Bottom-right: few streams, large batches. There are fewer kernel
launches and fewer streams to manage, so the introduced overhead
is minimum. However, due to this, the code cannot achieve a good
level of asynchronism. The memory required for the pools is not
excessive.

Finally, after examining these results, we can conclude that a good
configuration is a batch size of 256 features and asynchronism with two
streams. It is recommended as it is a good configuration overall and, in
some cases, the best one.

5.3.2. Block size

Now that the best configuration for the other parameters is known,
the impact on performance of the CUDA block size can be measured.

The number of threads that work concurrently in a CUDA block is rel-

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 13. Comparison of the average normalized speedups obtained for different combinations of batch sizes and number of CUDA streams (double-precision
implementation).

Fig. 14. Comparison of the average normalized speedups obtained for different combinations of batch sizes and number of CUDA streams (fixed-point implementa-
14

tion).

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 15. Comparison of the normalized speedups for different block sizes (number of threads per CUDA block).
evant since each block runs in a physical Streaming Multiprocessor
(with its own shared memory), so its hardware is shared among the
block threads. Therefore, on the one hand, codes with threads that re-

quire many resources would be able to achieve more parallelism with
a smaller block size, while a larger block would cause some threads
to stall waiting for resources. On the other hand, in codes with more
lightweight threads, a larger block size would be able to achieve more
parallelism, while a smaller one would cause some hardware to be idle.

The impact of the block size is depicted in Fig. 15. The same as for
the batch and streams, the graphs show normalized speedups. However,
the results presented correspond to the best configuration of batch size
and number of streams obtained in the previous step, so now each line
shows the normalized speedup for each case instead of an aggregation
for several parameters.

The results show that, in general, speedups increase with the block
size. Specifically, the maximum block size of 1024 threads achieves
the best speedup in some cases. However, this configuration can cause
performance drops in some other cases, so a better general recommen-

dation is to use a block size of 512 threads.

5.3.3. General recommendations

It should be noted that the configuration that achieves the best per-

formance would largely depend on the properties of the dataset, as well
as on the distribution of the values that each feature can take. There-

fore, we can recommend the configurations shown in Table 8 based on
their overall performance achieved in the experimental evaluation (i.e.,
they might not get the best speedup for a specific case, but work well
in general).

6. Conclusion

Feature Selection is nowadays a common and extremely important
step in Machine Learning, especially with the continuous increase in the
average size of datasets from different fields such as text mining, genet-
15

ics or bioinformatics. Among the many existing methods for FS, those
Table 8

Recommended configurations with overall good per-

formance for each microarchitecture and algorithm.

Microarch. Algorithm Block Batch Streams

Turing mRMR 1024 64 2

JMI 1024 64 2

DISR 512 64 2

Ampere mRMR 512 256 2

JMI 512 64 8

DISR 512 64 8

based on MI are widely employed. However, FS procedures require long
computation times for large datasets due to their quadratic complexity
with the number of features.

This work has presented CUDA implementations for three MI-based
FS methods: mRMR, JMI and DISR. Two CUDA versions were devel-

oped for each method: one that works with data in double precision
and another one that uses fixed point and low precision, thus reducing
the computational requirements at the cost of a slightly lower accu-

racy [20]. All codes are highly optimized with the use of shared mem-

ory, asynchronism through streams and a custom memory pool. The
extensive experimental evaluation with two Nvidia GPUs, four datasets,
and multiple algorithm configurations (a total of about 60,000 exe-

cutions) have proved that our implementations are able to efficiently
exploit the computing resources of modern and powerful GPUs. For in-

stance, all the experiments (even for double precision) finished in less
than 20 seconds on an Ampere A100 GPU, obtaining speedups of up to
283x compared to the popular sequential C implementations included in
the FEAST library. The versions of the algorithms that work with fixed-

point data are also beneficial in terms of performance, since they are
on average 12% faster than their double-precision counterparts. All the
CUDA implementations described in this work are publicly available
at https://gitlab .com /bieito /parallel -fst under a 3-Clause BSD license

(open source).

https://gitlab.com/bieito/parallel-fst

B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

As future work we aim to extend our CUDA approach to multi-GPU
platforms, as well as to other FS methods with the goal of providing a
broad suite where potential users can choose the parallel algorithms
that best fit their data and analyses. We will also try to design an
“autotuning” system that automatically selects the best configuration
parameters according to the characteristics of the GPU and the input
dataset.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported by grants PID2019-104184RB-I00, PID-

2019-109238GB-C22, TED2021-130599A-I00 and PID2022-136435NB-

I00, funded by MCIN/AEI/ 10.13039/501100011033 (TED2021 also
funded by “NextGenerationEU”/PRTR and PID2022 by “ERDF A way of
making Europe”, EU). Grant TSI-100925-2023-1, funded by Ministry
for Digital Transformation and Civil Service. FPU predoctoral grant
of Bieito Beceiro ref. FPU20/00997, funded by the Ministry of Sci-

ence, Innovation and Universities. We gratefully thank the Galician
Supercomputing Center (CESGA) for the access granted to its super-

computing resources. Funding for open access charge: Universidade da
Coruña/CISUG.

References

[1] H. Alshamlan, G. Badr, Y. Alohali, mRMR-ABC: a hybrid gene selection algorithm
for cancer classification using microarray gene expression profiling, BioMed Res.
Int. 2015 (2015) 604910.

[2] F. Azmandian, A. Yilmazer, J.G. Dy, J.A. Aslam, D.R. Kaeli, GPU-accelerated feature
selection for outlier detection using the local kernel density ratio, in: IEEE 12th
International Conference on Data Mining, 2012, pp. 51–60.

[3] N. Barraza, S. Moro, M. Ferreyra, A. de la Peña, Mutual information and sensitivity
analysis for feature selection in customer targeting: a comparative study, J. Inf. Sci.
45 (1) (2019) 53–67.

[4] B. Beceiro, J. González-Domínguez, J. Touriño, Parallel-FST: a feature selection li-
brary for multicore clusters, J. Parallel Distrib. Comput. 169 (2022) 106–116.

[5] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, A review of feature se-

lection methods on synthetic data, Knowl. Inf. Syst. 34 (3) (2013) 483–519.

[6] N.M. Braman, M. Etesami, P. Prasanna, C. Dubchuk, H. Gilmore, P. Tiwari, D.
Plecha, A. Madabhushi, Intratumoral and peritumoral radiomics for the pretreat-

ment prediction of pathological complete response to neoadjuvant chemotherapy
based on breast DCE-MRI, Breast Cancer Res. 19 (1) (2017) 1–14.

[7] G. Brown, A. Pocock, M.-J. Zhao, M. Luján, Conditional likelihood maximisation: a
unifying framework for information theoretic feature selection, J. Mach. Learn. Res.
13 (2012) 27–66.

[8] C.-C. Chang, C.-J. Linn, LIBSVM: a library for support vector machines, ACM Trans.
Intell. Syst. Technol. 2 (3) (2011) 27.

[9] H.-H. Chang, C.-Y. Li, An automatic restoration framework based on GPU-

accelerated collateral filtering in brain MR images, BMC Med. Imaging 19 (1) (2019)
1–13.

[10] S. Cuomo, A. Galletti, L. Marcellino, G. Navarra, G. Toraldo, On GPU–CUDA as pre-

processing of fuzzy-rough data reduction by means of singular value decomposition,
Soft Comput. 22 (5) (2018) 1525–1532.

[11] A. Das, N. Borisov, M. Caesar, Tracking mobile web users through motion sensors:
attacks and defenses, in: 23rd Annual Network and Distributed System Security Sym-

posium, 2016, pp. 282–296.

[12] J.J. Escobar, J. Ortega, J. González, M. Damas, A.F. Díaz, Parallel high-dimensional
multi-objective feature selection for EEG classification with dynamic workload bal-

ancing on CPU–GPU architectures, Clust. Comput. 20 (3) (2017) 1881–1897.

[13] H. Estiri, Z.H. Strasser, J.G. Klann, P. Naseri, K.B. Wagholikar, S.N. Murphy, Pre-

dicting COVID-19 mortality with electronic medical records, npj Digit. Med. 4 (1)
(2021) 1–10.

[14] P. Fazendeiro, C. Padole, P. Sequeira, P. Prata, OpenCL implementations of a ge-

netic algorithm for feature selection in periocular biometric recognition, in: 3rd
International Conference on Swarm, Evolutionary, and Memetic Computing, 2012,
pp. 729–737.

[15] J. González-Domínguez, V. Bolón-Canedo, B. Freire, J. Touriño, Parallel feature se-
16

lection for distributed-memory clusters, Inf. Sci. 496 (2019) 399–409.
Journal of Parallel and Distributed Computing 190 (2024) 104901

[16] J. González-Domínguez, R.R. Expósito, V. Bolón-Canedo, CUDA-JMI: acceleration of
feature selection on heterogeneous systems, Future Gener. Comput. Syst. 102 (2020)
426–436.

[17] I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, Feature Extraction: Foundations and
Applications, Springer, 2006.

[18] F. Jalali-Najafabadi, M. Stadler, N. Dand, D. Jadon, M. Soomro, P. Ho, H. Marzo-

Ortega, P. Helliwell, E. Korendowych, M.A. Simpson, et al., Application of informa-

tion theoretic feature selection and machine learning methods for the development
of genetic risk prediction models, Sci. Rep. 11 (1) (2021) 1–14.

[19] P.E. Meyer, G. Bontempi, On the use of variable complementarity for feature selec-

tion in cancer classification, in: Workshops on Applications of Evolutionary Compu-

tation, 2006, pp. 91–102.

[20] L. Morán-Fernández, K. Sechidis, V. Bolón-Canedo, A. Alonso-Betanzos, G. Brown,
Feature selection with limited bit depth mutual information for portable embedded
systems, Knowl.-Based Syst. 197 (2020) 105885.

[21] R.-J. Palma-Mendoza, L. de Marcos, D. Rodriguez, A. Alonso-Betanzos, Distributed
correlation-based feature selection in Spark, Inf. Sci. 496 (2019) 287–299.

[22] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal.
Mach. Intell. 27 (8) (2005) 1226–1238.

[23] S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bolón-Canedo, J.M. Benítez, F.
Herrera, A. Alonso-Betanzos, Fast-mRMR: fast minimum redundancy maximum rel-

evance algorithm for high-dimensional big data, Int. J. Intell. Syst. 32 (2) (2017)
134–152.

[24] A. Samat, E. Li, P. Du, S. Liu, J. Xia, GPU-accelerated catboost-forest for hyperspec-

tral image classification via parallelized mRMR ensemble subspace feature selection,
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14 (2021) 3200–3214.

[25] R. Shams, N. Barnes, Speeding up mutual information computation using NVIDIA
CUDA hardware, in: 9th Biennial Conference of the Australian Pattern Recog-

nition Society on Digital Image Computing Techniques and Applications, 2007,
pp. 555–560.

[26] M. Soheili, A.M. Eftekhari-Moghadam, DQPFS: distributed quadratic programming
based feature selection for big data, J. Parallel Distrib. Comput. 138 (2020) 1–14.

[27] O. Soufan, D. Kleftogiannis, P. Kalnis, V.B. Bajic, DWFS: a wrapper feature selection
tool based on a parallel genetic algorithm, PLoS ONE 10 (2) (2015) e0117988.

[28] L. Venkataramana, S.G. Jacob, R. Ramadoss, A parallel multilevel feature selection
algorithm for improved cancer classification, J. Parallel Distrib. Comput. 138 (2020)
78–98.

[29] B. Venkatesh, J. Anuradha, Fuzzy rank based parallel online feature selection
method using multiple sliding windows, Open Comput. Sci. 11 (1) (2021) 275–287.

[30] Z. Yan, Z. Wang, H. Xie, The application of mutual information-based feature selec-

tion and fuzzy LS-SVM-based classifier in motion classification, Comput. Methods
Programs Biomed. 90 (3) (2008) 275–284.

[31] H.H. Yang, J.E. Moody, Data visualization and feature selection: new algorithms for
nongaussian data, in: Advances in Neural Information Processing Systems, vol. 12,
1999, pp. 687–693.

[32] Z. Zhao, R. Anand, M. Wang, Maximum relevance and minimum redundancy feature
selection methods for a marketing machine learning platform, in: IEEE International
Conference on Data Science and Advanced Analytics, 2019, pp. 442–452.

[33] H. Zhu, Y. Wu, P. Li, P. Zhang, Z. Ji, M. Gong, An OpenCL-accelerated parallel im-

munodominance clone selection algorithm for feature selection, Concurr. Comput.,
Pract. Exp. 29 (9) (2017) e3838.

Bieito Beceiro received the B.S. in computer science and the
M.S. in High Performance Computing (HPC) from the Universi-

dade da Coruña (UDC), Spain, in 2020 and 2021, respectively.
He is currently a Ph.D. student at the Computer Architecture
Group of the UDC. His work is focused on the acceleration of
machine learning methods for computational science using HPC
techniques.

Jorge González-Domínguez received the B.S., M.S., and
Ph.D. degrees in computer science from the Universidade da
Coruña (UDC), Spain, in 2008, 2009, and 2013, respectively. He
is currently an Associate Professor with the Department of Com-

puter Engineering, UDC. His main research interests include the
development of parallel applications on multiple fields, such as
bioinformatics, data mining, and machine learning, focused on
different architectures (multicore systems, GPUs, clusters, and so
on).

Laura Morán-Fernández received her B.S. (2015) and Ph.D.
(2020) degrees in Computer Science from the Universidade da
Coruña (Spain). She is currently an Assistant Lecturer in the De-

partment of Computer Science of the Universidade da Coruña.
She received the Frances Allen Award (2021) from the Spanish
Association of Artificial Intelligence (AEPIA). Her research inter-

ests include machine learning, feature selection and big data. She
has co-authored four book chapters, and more than 15 research

papers in international journals and conferences.

http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25F62F22716EBB4AE37F412DA65A9AEFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25F62F22716EBB4AE37F412DA65A9AEFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25F62F22716EBB4AE37F412DA65A9AEFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibA71FF24704AF00CA16C75685F6A2B7C3s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibA71FF24704AF00CA16C75685F6A2B7C3s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibA71FF24704AF00CA16C75685F6A2B7C3s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib447AA455AAD74BE5BC0A39BB4609791Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib447AA455AAD74BE5BC0A39BB4609791Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib447AA455AAD74BE5BC0A39BB4609791Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib666144F6ECB5E9604DA310D133BF5A39s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib666144F6ECB5E9604DA310D133BF5A39s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibF8465587033EFD552EE7A7C57B14694Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibF8465587033EFD552EE7A7C57B14694Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibD9E5D212320E7D96E921831554BE696Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibD9E5D212320E7D96E921831554BE696Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibD9E5D212320E7D96E921831554BE696Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibD9E5D212320E7D96E921831554BE696Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibEABFCE096B6FEA86AFBC235570E68D8Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibEABFCE096B6FEA86AFBC235570E68D8Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibEABFCE096B6FEA86AFBC235570E68D8Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8B373710BCF876EDD91F281E50ED58ABs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9A6C383A42C1192136D9F322A056B03Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9A6C383A42C1192136D9F322A056B03Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9A6C383A42C1192136D9F322A056B03Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9CA91FD2EE5F4B463D11404B9C84803Cs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9CA91FD2EE5F4B463D11404B9C84803Cs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib9CA91FD2EE5F4B463D11404B9C84803Cs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib628F5F92E65D2BB2C403D994831FBA9As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib628F5F92E65D2BB2C403D994831FBA9As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib628F5F92E65D2BB2C403D994831FBA9As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib48017BF0BB0C20CFD7C3378F1EB3FA99s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib48017BF0BB0C20CFD7C3378F1EB3FA99s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib48017BF0BB0C20CFD7C3378F1EB3FA99s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibDA78B054571A318D567A9D60AA58B0B2s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibDA78B054571A318D567A9D60AA58B0B2s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibDA78B054571A318D567A9D60AA58B0B2s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibDA78B054571A318D567A9D60AA58B0B2s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibFFA2EEC886D0EB001A2B81492D9BC25Cs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibFFA2EEC886D0EB001A2B81492D9BC25Cs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib1EDAE102638A8CD7882E6DE1C1E9639Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib1EDAE102638A8CD7882E6DE1C1E9639Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib1EDAE102638A8CD7882E6DE1C1E9639Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib1EDAE102638A8CD7882E6DE1C1E9639Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibB37E241C620C3483CE96770C53606E2Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibB37E241C620C3483CE96770C53606E2Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibB37E241C620C3483CE96770C53606E2Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE529989FF9A0F2963A30C4DAB27DE31Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE529989FF9A0F2963A30C4DAB27DE31Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE529989FF9A0F2963A30C4DAB27DE31Ds1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE2CC1E3DBFFFED1981DDA0B3604F6A40s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE2CC1E3DBFFFED1981DDA0B3604F6A40s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibE2CC1E3DBFFFED1981DDA0B3604F6A40s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25C21DD369A54351819B4FB88A9AEA63s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25C21DD369A54351819B4FB88A9AEA63s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25C21DD369A54351819B4FB88A9AEA63s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib25C21DD369A54351819B4FB88A9AEA63s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8FFF36126DC32D7465EA4D0A073A9A45s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8FFF36126DC32D7465EA4D0A073A9A45s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib8FFF36126DC32D7465EA4D0A073A9A45s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibBD326BB854862BFD1AE507A23617324Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibBD326BB854862BFD1AE507A23617324Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibBD326BB854862BFD1AE507A23617324Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibBD326BB854862BFD1AE507A23617324Bs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib12E2ECB7672EB5DD6A91C830E118EEFEs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib12E2ECB7672EB5DD6A91C830E118EEFEs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib933ED1765C7AEA9E15F4EB6600DD745Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib933ED1765C7AEA9E15F4EB6600DD745Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib933ED1765C7AEA9E15F4EB6600DD745Es1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib04D286B98EC89A1415574F072845030As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib04D286B98EC89A1415574F072845030As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib04D286B98EC89A1415574F072845030As1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib54D6ECF7AECC6F9BF619E59F11D811C5s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib54D6ECF7AECC6F9BF619E59F11D811C5s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib54D6ECF7AECC6F9BF619E59F11D811C5s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7557E67D81132758030EE22F3B7E1537s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7557E67D81132758030EE22F3B7E1537s1
http://refhub.elsevier.com/S0743-7315(24)00065-0/bib7557E67D81132758030EE22F3B7E1537s1

Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Verónica Bolón-Canedo received her B.S. (2009), M.S.
(2010) and Ph.D. (2014) degrees in Computer Science from the
Universidade da Coruña (Spain). After a postdoctoral fellowship
in the University of Manchester, UK (2015), she is currently an
Associate Professor in the Department of Computer Science of
the Universidade da Coruña. Her main current areas are machine
learning and feature selection. She is co-author of more than 100
papers on these topics in international conferences and journals.

Juan Touriño is a Full Professor with the Department
of Computer Engineering, Universidade da Coruña, where he
also leads the Computer Architecture Group. He has exten-

sively published in the area of High Performance Comput-

ing (HPC): HPC & AI convergence, programming languages
and compilers for HPC, high-performance architectures and
networks, parallel algorithms and applications in computa-

tional science and engineering. He is coauthor of more than
170 papers on these topics in international conferences and

journals.
17

	CUDA acceleration of MI-based feature selection methods
	1 Introduction
	2 Related work
	3 Background: feature selection with mutual information and fixed point
	3.1 Minimum redundancy maximum relevance (mRMR)
	3.2 Joint mutual information (JMI)
	3.3 Double input symmetrical relevance (DISR)
	3.4 Fixed point for MI-based feature selection

	4 CUDA implementation
	4.1 CUDA implementation for mRMR
	4.1.1 CUDA kernel
	4.1.2 Batch processing
	4.1.3 Custom GPU memory management
	4.1.4 Asynchronism
	4.1.5 Shared memory
	4.1.6 Complexity analysis

	4.2 CUDA implementation for JMI
	4.2.1 CUDA kernel
	4.2.2 Batch processing and asynchronism
	4.2.3 Custom GPU memory pool
	4.2.4 Shared memory
	4.2.5 Complexity analysis

	4.3 CUDA implementation for DISR
	4.4 Adaptation to fixed point

	5 Experimental evaluation
	5.1 Impact of shared memory
	5.2 Comparison with the state of the art
	5.3 Selection of the configuration parameters
	5.3.1 Batch size and streams
	5.3.2 Block size
	5.3.3 General recommendations

	6 Conclusion
	Declaration of competing interest
	Acknowledgment
	References

