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Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing 
irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of 
subsequent analyses. The problem with current feature selection approaches is that they are computationally 
expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three 
highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR. 
Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation 
of them to work with low-precision fixed point in order to further increase their performance on GPUs. The 
experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly 
satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations.
1. Introduction

In recent years we have witnessed the Big Data phenomenon, where 
data is in continuous increase in different areas such as bioinformatics, 
marketing, physics or engineering. These data are interesting when we 
can extract useful information from them to further guide decisions or 
make conclusions. However, this data increase leads to computationally 
costly analyses, and sometimes even to worse conclusions due to the 
presence of redundant or irrelevant data [5].

The procedure within the Machine Learning (ML) field that chooses 
only those characteristics that provide relevant information is called 
Feature Selection (FS) [17]. In recent years, in the field of FS research, 
many works have emerged focused on the development of different al-

gorithms that use certain criteria for the selection process [5]. These 
criteria should try to find the most relevant features, but in such a way 
that the redundancy among them is minimal. Some of the most widely 
used and well-known methods that reach these goals are those based on 
Mutual Information (MI) [7], which have been satisfactorily employed 
in different scenarios, such as medicine [6,13], genetics [1,18], market-

ing [3,32], biomedicine [30] or electronics [11].

However, MI-based FS algorithms present quadratic complexity 
(each feature must be compared to the other ones in every step), lead-

ing to high runtimes for large datasets. High Performance Computing 
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(HPC) is key to reduce these runtimes and make them more feasible for 
Big Data. GPUs are nowadays very popular among HPC architectures as 
they provide high computational power with low energy requirements, 
and they have been exploited for many years to accelerate the calcu-

lation of MI [25]. In this work we present CUDA implementations for 
three highly used MI-based FS methods that efficiently exploit the com-

putational capabilities of Nvidia GPUs. Concretely, the main strengths 
of these implementations are:

• They are based on three methods that use MI to distinguish be-

tween relevant and irrelevant features. The use of MI for this pur-

pose is well known and widely adopted by the ML community.

• They are highly optimized for modern Nvidia GPUs (Turing and 
Ampere architectures).

• They include a specific version of the algorithms to work with fixed 
point that further accelerates FS on GPUs.

• They are publicly available to download from https://gitlab .com /
bieito /parallel -fst.

The rest of the paper is organized as follows. The state of the art and 
related work are summarized in Section 2. Some concepts about MI-

based FS that are necessary to understand the algorithms are explained 
in Section 3. Section 4 describes the CUDA implementations, while Sec-
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tion 5 shows the experimental evaluation and Section 6 presents the 
conclusions and future work lines.

2. Related work

There are some works in the literature that already tried to acceler-

ate FS methods on GPUs. Nevertheless, up to our knowledge, CUDA-

JMI [16] is the only previous parallel implementation that can be 
directly compared to any of the three methods addressed in this work. 
Concretely, CUDA-JMI is focused on the Joint Mutual Information (JMI) 
method (see Section 3.2) and obtained good performance on past Nvidia 
GPU architectures such as Kepler and Maxwell. However, as will be 
seen in Section 5.2, it is not well prepared to exploit the characteristics 
of more recent Nvidia GPU architectures such as Turing and Ampere. 
Another work that addressed a GPU implementation of an FS algorithm 
based on MI is Fast-mRMR [23], with several versions (C++, CUDA and 
Apache Spark) of a variant of the minimum Redundancy Maximum Rel-

evance (mRMR) algorithm. Nevertheless, the performance of the GPU 
version is quite limited (speedups of up to 5.32x compared to a sequen-

tial C version of mRMR). This is because it is based on an old CUDA 
version (for instance, it cannot exploit the modern hardware atomic 
operations) and does not include features to improve memory manage-

ment such as a memory pool or asynchronism through streams.

FS methods not based on MI have also been adapted to work on 
GPUs, but none of these works have led to publicly available software. 
Some examples are CUDA implementations of the Singular Value De-

composition [10], the Local Kernel Density Ratio [2], and an online FS 
algorithm [29]. Apart from CUDA, OpenCL is also used to exploit the 
hardware of GPUs, for example, in a version of the Immunodominance 
Clone Selection Algorithm (ICSA) [33]. There are also parallel imple-

mentations of FS methods directly designed for specific fields such as 
electroencephalogram classification [12], brain image restoration [9], 
periocular biometric recognition [14], or hyperspectral image classifi-

cation [24].

Finally, parallel implementations of FS methods for other HPC in-

frastructures have also been addressed, from clusters and supercomput-

ers using the message-passing paradigm [4,15,27] to Big Data systems 
using the Hadoop and/or Spark frameworks [21,26,28].

3. Background: feature selection with mutual information and 
fixed point

As already mentioned in Section 1, FS is the process of selecting 
the relevant features and discarding the irrelevant or redundant ones. 
Many datasets include noisy and useless features, which waste a lot 
of computational resources. Therefore, FS plays a crucial role in the 
ML framework by removing nonsense features and preserving a small 
subset to reduce the computational complexity.

One of the most common metrics to capture dependencies between 
features in ML is MI. Let 𝑋 be the set of features of a given problem, 
and 𝑌 the class label. MI is defined as the expected logarithm of a ratio 
in the following way:

𝐼(𝑋;𝑌 ) =
∑
𝑥∈

∑
𝑦∈

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

, (1)

where 𝑝(𝑥, 𝑦) is the probability mass function of the joint distribution 
when the random variable 𝑋 takes on the value 𝑥 from its alphabet 
and 𝑌 takes on 𝑦 ∈ , while 𝑝(𝑥) and 𝑝(𝑦) are the probability mass func-

tions of the marginal distributions. In practice, the sample (maximum 
likelihood) estimates of the probabilities �̂� are used, and the equation 
results in:

𝐼(𝑋;𝑌 ) ≈ 𝐼(𝑋;𝑌 ) =
∑ ∑

�̂�(𝑥, 𝑦) log �̂�(𝑥, 𝑦)
(2)
2

𝑥∈ 𝑦∈ �̂�(𝑥)�̂�(𝑦)
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The computation of MI is at the heart of several information theo-

retic FS methods [7]. In this work, we will focus on three of the most 
used ones, which will be described in the following subsections.

3.1. Minimum redundancy maximum relevance (mRMR)

The minimum redundancy and maximum relevance optimization 
criteria, both based on MI, are the foundation of the mRMR method 
[22]. The score of a certain feature 𝑋𝑘, when a subset of features 𝑆 has 
already been selected, is calculated as:

𝑚𝑅𝑀𝑅(𝑋𝑘) = 𝐼(𝑋𝑘;𝑌 ) −
1|𝑆|

∑
𝑋𝑗∈

𝐼(𝑋𝑘;𝑋𝑗 ) (3)

As the feature set 𝑆 grows, the mRMR criterion has a stronger belief 
in the assumption that the selected features are pairwise independent. 
mRMR tries with the two terms of the equation not only to capture the 
relevance to the class, but also to avoid the redundancy among features 
of 𝑆 .

3.2. Joint mutual information (JMI)

The JMI method [31] is focused on increasing complementary infor-

mation between features given the class labels by using the following 
score for feature 𝑋𝑘:

𝐽𝑀𝐼(𝑋𝑘) =
∑

𝑋𝑗∈
𝐼(𝑋𝑘𝑋𝑗 ;𝑌 ), (4)

where the information between the target and a joint variable 𝑋𝑘𝑋𝑗 , 
which associates 𝑋𝑘 with each previously chosen feature, is calculated. 
The main principle is that we should incorporate a new feature if it is 
“complementary” to already existing features.

3.3. Double input symmetrical relevance (DISR)

The DISR method [19] is a normalized variant of the JMI crite-

rion. DISR combines two well-known properties of FS. First, a set of 
features might provide more information about an output class than 
the total of the information provided by each feature considered sepa-

rately. Second, it seems natural to assume that the combination of the 
best-performing subsets of features is the most promising set in the ab-

sence of any additional knowledge about how subsets of features should 
be combined. It uses the following modification of the JMI criterion:

𝐷𝐼𝑆𝑅(𝑋𝑘) =
∑

𝑋𝑗∈

𝐼(𝑋𝑘𝑋𝑗 ;𝑌 )
𝐻(𝑋𝑘𝑋𝑗𝑌 )

, (5)

where 𝐼 is the MI and 𝐻 is the entropy, which quantifies the uncer-

tainty present in the distribution of 𝑋. It is defined as:

𝐻(𝑋) = −
∑
𝑥∈

𝑝(𝑥) log𝑝(𝑥) (6)

The entropy, however, can be conditioned by other events. The def-

inition of the conditional entropy of 𝑋 given 𝑌 is defined as follows:

𝐻(𝑋|𝑌 ) = −
∑
𝑦∈

𝑝(𝑦)
∑
𝑥∈

𝑝(𝑥|𝑦) log𝑝(𝑥|𝑦) (7)

The relation between the entropy, the conditional entropy, the MI 
and the joint entropy (𝐻(𝑋, 𝑌 )) can be seen in Fig. 1. More information 
about these information theoretic quantities can be found in [7].

3.4. Fixed point for MI-based feature selection

FS is usually performed on machines with high-precision represen-

tation, i.e. double-precision floating-point computations (64 bits). The 
use of a more powerful general purpose processor can provide signif-
icant benefits in terms of speed and capability to solve more complex 
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Fig. 1. Illustration of different information theoretic metrics.

problems. But this capability does not come without cost, as a con-

ventional microprocessor can require a substantial amount of off-chip 
hardware support, memory, and often a complex operating system. 
Modern Nvidia GPUs provide support to perform operations with lower 
precision (32, 16 or even 8 bits) at high speed. Therefore, adapting FS 
methods to work with these data types can help to increase the per-

formance of the CUDA-based implementations. Moreover, being able 
to reduce the precision of the computations performed by the FS algo-

rithms reduces the memory footprint, thus enabling larger models to 
fit within the given memory capacity and lowering the bandwidth re-

quirements. Morán-Fernández et al. [20] proposed the use of a lighter 
procedure for the MI computation based on the usage of low-precision 
fixed-point operations. Although it was originally designed for embed-

ded systems, Section 4.4 will describe how it was adapted for Nvidia 
GPUs. A fixed-point representation with 𝑏𝑖 as the number of integer bits 
and 𝑏𝑓 as the number of fractional bits was intended as an alternative 
to the traditional floating-point 64-bit resolution.

Since MI parameters are typically represented in the logarithmic 
domain, a look-up table is used to determine the logarithm of the prob-

ability of a particular event. The look-up table is indexed in terms of 
number of occurrences of an event (individual counters) and the total 
number of events (total counter), and stores values for the logarithms in 
the desired fixed-point representation. To limit the maximum size of the 
look-up table and the bit-width required for the counters, a maximum 
integer number 𝑀 is assumed and the look-up table 𝐿 is precomputed 
such that:

𝐿(𝑖, 𝑗) =
[
log(𝑖∕𝑗)

𝑞

]
𝑅

⋅ 𝑞, (8)

where [⋅]𝑅 denotes rounding to the closest integer, 𝑞 is the quantization 
interval of the desired fixed-point representation (2−𝑏𝑓 ), log(⋅) is the 
logarithm in base 2, and the counters 𝑖 and 𝑗 are in the range [0, 𝑀 −1]. 
We refer to [20] for more detailed information about the calculation of 
this look-up table.

The total counter 𝑆 and the individual counters 𝑠𝑖
𝑗

are computed 
using the Algorithm 1 given a set of specific data. We made the as-

sumption that there was some maximum integer number 𝑀 , where 
𝑀 = 2(𝑏𝑓+𝑏𝑖) − 1. The algorithm first checks that all counters are within 
bounds. Then, the total counter 𝑆 is computed as the sum of all of 
them. However, it is important to check that 𝑆 is still within bounds. In 
the case that 𝑆 ≥𝑀 , an index correction must be applied, and both the 
total counter and all the individual counters are halved. Finally, the val-

ues of 𝑆 and 𝑠𝑖
𝑗

can be used to retrieve the log-probability low-precision 
values from the look-up table.

4. CUDA implementation

As previously mentioned, GPUs are nowadays widely used in the 
HPC field due to their high computational capabilities. MI computation 
is a procedure with a high level of parallelism, so GPUs are a suitable 
architecture to accelerate it.

The CUDA implementations for three MI-based methods (mRMR, 
3

JMI and DISR) presented in this work are based on the sequential C 
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Algorithm 1: Low-precision mutual information.

1 Input: Individual counters 𝑠𝑖
𝑗

and total counter 𝑆 ; look-up table 𝐿
2 for 𝑖, 𝑗 do

3 // maximum value reached?

4 if 𝑠𝑖
𝑗
=𝑀 then

5 // half counters (round down)

6 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
∕2 ∀𝑖, 𝑗

end

end

7 // sum of the individual counters

8 𝑆 ←
∑

(𝑠𝑖
𝑗
)

9 // ensure that 𝑆 is in range

10 while 𝑆 ≥𝑀 do

11 𝑆 ← 𝑆∕2
12 // revise index correction

13 𝑠𝑖
𝑗
← 𝑠𝑖

𝑗
∕2 ∀𝑖, 𝑗

end

14 // get the log probability from look-up table

15 𝑙𝑖
𝑗
←𝐿(𝑠𝑖

𝑗
, 𝑆) ∀𝑖, 𝑗

16 Return: 𝑙𝑖
𝑗

Fig. 2. High-level structure of the FS methods included in FEAST and cuFEAST, 
for the selection of a subset 𝑆 with 𝑘 features from a dataset 𝐷.

counterpart methods included in the FEAST1 library, which are theo-

retically described in [7] and have been extensively tested and used 
by scientists. Our implementations are gathered in a library named 
cuFEAST. Note that these FS methods require discrete data, so the li-
brary also includes support to discretize continuous data using a binning 
approach. Specifically, the range of values of each feature is split into 
bins of constant size, where the number of bins must be indicated by the 
user. The cuFEAST implementations accept as input datasets in ARFF, 
CSV or LIBSVM formats, and share the common structure shown in 
Fig. 2, with the following two steps:

1. Selection of the first feature. At the beginning, the set of selected 
features 𝑆 is empty, so redundancy cannot be computed yet. Thus, 
the value that is used as the score to select the first feature is the 
relevance, which can be approximated as the MI between each fea-

ture and the class.

2. Selection of the other 𝒌− 𝟏 features. This part consists of a loop 
that selects one more feature for the 𝑆 set in each iteration. At this 
point, the algorithm has already selected at least one feature, so 
more sophisticated metrics can be used for score computation (see 
Section 3). Note that these advanced metrics take 𝑆 into account to 
compute scores, as they try to minimize the redundancy with the 
already selected features. Hence, there is a dependency between 
iterations which does not allow for parallel execution (the scores of 
iteration 𝑖 + 1 cannot be calculated until the feature corresponding 
to iteration 𝑖 has been selected).
1 Available at https://github .com /Craigacp /FEAST.

https://github.com/Craigacp/FEAST
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Algorithm 2: Computation of all scores for an iteration of 
mRMR, JMI and DISR in FEAST. Green lines correspond to the 
mRMR algorithm only. Purple lines are exclusive to JMI and 
DISR.

Input: Dataset 𝐷; subset of already selected features 𝑆 ; cache of 
inter-feature scores 𝑃𝐶 ; cache of MI values with dataset class 
𝑐𝑙𝑎𝑠𝑠𝑀𝐼

Output: Computed scores of features 𝑃 ; updated score cache 𝑃𝐶

1 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

2 𝑃𝑖 ← 𝑐𝑙𝑎𝑠𝑠𝑀𝐼𝑖
3 𝑃𝑖 ← 0
4 for feature 𝑋𝑗 ∈ 𝑆 do

5 if 𝑗 = |𝑆| − 1 then

6 // 𝑋𝑗 is the most recently selected feature

𝐿 ←𝑋𝑗

𝑃𝐶𝑗𝑖 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒(𝑋𝑖, 𝐿)
end

7 𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖∕|𝑆|
𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖

end

end

The focus of this work is the acceleration of the score computation 
(dashed outline in Fig. 2) since it is the most computationally expensive 
part of the algorithms. Furthermore, it is highly parallel as the calcula-

tion of the score is independent for each feature.

The computation of scores in the three methods (mRMR, JMI and 
DISR) shares a common structure, which is shown in Algorithm 2. The 
algorithm iterates over all the features of the dataset 𝐷 (loop of line 1) 
to compute their scores 𝑃 . The scores are initialized (line 2) to the MI 
of the active feature 𝑋𝑖 and the class (denoted by 𝑌 in the formulas of 
Section 3) in mRMR, and to zero in JMI and DISR. Then, the inner loop 
(line 4) iterates over each already selected feature 𝑋𝑗 , so the score 𝑃𝑖 is 
updated depending on the information metric between 𝑋𝑖 and 𝑋𝑗 (the 
metric depends on the selected algorithm).

Note that this pseudocode shows an optimization that was already 
included in the base implementation of the FEAST algorithms, that is, 
the usage of two caches:

• classMI (mRMR only) stores the MI between each feature in the 
dataset and the class. These values are accessible at the beginning 
of the algorithm since they were already computed to be used as 
scores for the selection of the first feature.

• PC is a matrix that stores all the partial scores between each fea-

ture of the dataset and each previously selected feature. This opti-

mization heavily reduces the complexity of the code: as the scores 
related to the previously selected features can be directly obtained 
from the PC matrix, only the score related to the last selected fea-

ture must be calculated.

These caches are also used in cuFEAST. Moreover, the code has been 
rearranged to later benefit from optimizations such as batch processing 
and asynchronism (explained in detail in later sections). This rearrange-

ment is shown in Algorithm 3 and consists in the extraction of the 
partial score computation to the outer level of the loops (lines 3-4), 
so that computations for all the features in the dataset are grouped.

Fig. 3 shows the concrete operations involved in the computation of 
the score of any feature 𝑋, the last selected feature 𝐿, and the dataset 
class 𝑌 in each method. Note that MI is computed in the three methods, 
but whereas in mRMR just the two features are involved, JMI and DISR 
also use the class and their joint state, which are calculated in a previous 
stage called merge arrays (“mA” in the figure). Finally, the computation 
of the DISR scores involves an additional metric with respect to JMI, 
that is, the joint entropy (𝐻) between the joint state of the features and 
4

the dataset class (see Section 3.3).
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Algorithm 3: Computation of all scores for an iteration of 
mRMR, JMI and DISR in cuFEAST (with the rearrangement). 
Green lines correspond to the mRMR algorithm only. Purple 
lines are exclusive to JMI and DISR.

Input: Dataset 𝐷; subset of already selected features 𝑆 ; cache of 
inter-feature scores 𝑃𝐶 ; cache of MI values with dataset class 
𝑐𝑙𝑎𝑠𝑠𝑀𝐼

Output: Computed scores of features 𝑃 ; updated score cache 𝑃𝐶

1 𝑙← |𝑆| − 1
2 𝐿 ←𝑋𝑙

3 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

4 𝑃𝐶𝑙𝑖 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒(𝑋𝑖, 𝐿)
end

5 for feature 𝑋𝑖 ∈𝐷 ⧵𝑆 do

6 𝑃𝑖 ← 𝑐𝑙𝑎𝑠𝑠𝑀𝐼𝑖
𝑃𝑖 ← 0

7 for feature 𝑋𝑗 ∈ 𝑆 do

8 𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖∕|𝑆|
𝑃𝑖 ← 𝑃𝑖 + 𝑃𝐶𝑗𝑖

end

end

Fig. 3. Operations involved in the computation of the score of an arbitrary 
feature 𝑋𝑖 , where 𝐿 is the last selected feature and 𝑌 the dataset class.

In summary, we have three methods that share a common structure, 
but differ in the calculations that are performed to compute feature 
scores, which is the most computationally expensive part of the algo-

rithms. For this reason, we will focus on the adaptation of that part to be 
accelerated with GPUs. Due to previous optimizations and code refac-

toring, the heaviest computation has been grouped in a single function, 

whose parallelization will be explained in the following subsections.
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Fig. 4. Comparison of sequential and CUDA implementations of histogram cre-

ation.

Fig. 5. Comparison of sequential and CUDA implementations of histogram pro-

cessing for MI.

4.1. CUDA implementation for mRMR

As explained in Section 3.1, the mRMR algorithm uses the MI to 
compute the feature scores. Due to the caching and code refactoring, 
the operation that must be performed in parallel is the calculation of MI 
between every not selected feature in the dataset and the last selected 
one (lines 3 and 4 in Algorithm 3).

The calculation of the MI between one feature 𝑋 and the last se-

lected one (𝐿) can be divided into three steps:

1. Histogram creation. First, three histograms (i.e., counters of the 
occurrences for the different values) are created: a unidimensional 
histogram for 𝐿 (𝐶𝐿), a unidimensional one for 𝑋 (𝐶𝑋 ), and a 
bidimensional one for the joint state of 𝑋 and 𝐿 (𝐶𝐿𝑋 ). See left 
half of Fig. 4 (labeled as “Sequential”).

2. Conversion to probabilities. Then, all values in histograms 𝐶𝑋 , 
𝐶𝐿 and 𝐶𝐿𝑋 are divided by the number of samples to obtain prob-

abilities from counts, and are stored in 𝑃𝑋 , 𝑃𝐿 and 𝑃𝐿𝑋 , respec-

tively.

3. Histogram processing. Finally, the probability structures are pro-

cessed to obtain the MI between the two variables, as seen in 
Equation (2). See left half of Fig. 5.

4.1.1. CUDA kernel

The mRMR implementation in cuFEAST includes only one kernel 
that covers the three steps explained before. One CUDA block per fea-

ture is created, and the work for each MI calculation is divided among 
the threads of the block as follows:

1. Histogram creation. Each thread 𝑇𝑡 works with the values corre-

sponding to a same position in the two variables (𝑋𝑡 and 𝐿𝑡), and 
updates the histograms according to the read values (𝐶𝑋 [𝑋𝑡] and 
𝐶𝐿𝑋 [𝑋𝑡][𝐿𝑡]). Note that it is not necessary to calculate 𝐶𝐿 for ev-

ery feature, as it corresponds to the last selected feature, which 
is used for all the MI calculations. Therefore, performance is im-
5

proved by computing it only once and storing it in a memory that 
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is accessible by CUDA threads for the third step. The CUDA ap-

proach to create the histograms is illustrated in the right half of 
Fig. 4.

2. Conversion to probabilities. The conversion from counts to prob-

abilities is done in a “lazy” fashion. That is, instead of having the 
values stored, their computation is delayed until the probabilities 
are needed. This allows to reduce memory consumption since the 
storage of three additional structures that use 64-bit data (i.e., 𝑃𝑋 , 
𝑃𝑌 and 𝑃𝑋𝑌 with float64) is avoided.

3. Histogram processing. In the CUDA kernel, the histograms are 
divided among threads in a column fashion. That is, each thread 
computes the partial MI of a value of the 𝐶𝑋 histogram, all 𝐶𝐿, 
and the corresponding column of 𝐶𝐿𝑋 . For instance, a thread 𝑇𝑡

would process the partial MI with the value 𝐶𝑋 [𝑡], all 𝐶𝐿, and the 
column 𝐶𝐿𝑋 [∗][𝑡] (see the right half of Fig. 5). Then, all threads 
aggregate their partial solutions to achieve the total MI.

Note that, as there are several CUDA threads working concurrently, 
the operations that update memory positions must be performed atom-

ically to keep a consistent memory model. Specifically, the CUDA func-

tion atomicAdd_block is used for histogram creation and the addi-

tion of the partial MI of each thread to the complete MI. Moreover, 
to get consistency, the threads must be synchronized before advancing 
from the histogram creation to its processing. This is achieved with the

__syncthreads() CUDA function.

As mentioned before, each thread is responsible for the computa-

tions of a position of the input features during the histogram creation, 
and of a column of the bidimensional histogram for the calculation of 
the partial MI. We have also seen that a single block is used to pro-

cess each feature, but the amount of threads per block is fixed for each 
execution (selected by the user as input parameter). A cyclic approach 
is applied to split the computation among threads: for a workload of 
𝑊 items, each item 𝑊𝑛 is assigned to thread 𝑛 mod 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒. Note 
that 𝑊 = #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 for the histogram creation, while 𝑊 = 𝑙𝑒𝑛(𝐶𝑋 ) =
𝑚𝑎𝑥(𝑋) for the processing.

Finally, the GPU memory used by the histograms has to be explic-

itly managed (allocated, initialized and freed). This introduces a certain 
overhead, but it will be reduced with some optimizations described in 
the following subsections.

4.1.2. Batch processing

Now that a kernel that computes the MI between two features has 
been presented, the implementations need to repeat this calculation for 
each feature in the dataset. Taking into account that one CUDA block 
is in charge of the MI value for a certain feature (the total number 
of features can be much higher than the maximum number of CUDA 
blocks), three different approaches were identified to calculate the MI 
between the last selected feature and all the not already selected ones:

1. Launch one kernel per feature. This would be the most naive ap-

proach, since it would consist of repeatedly resetting GPU memory 
and launching the kernel with only one CUDA block. The main ben-

efit is that its implementation is quite simple (a for loop), but this 
memory reset would introduce a really high overhead and it would 
not take advantage of memory bandwidth.

2. Launch a single kernel for all features. The opposite approach 
would be to rely on a single kernel call, with one block per fea-

ture. The implementation would be simpler, since the for loop is 
avoided, but we would need to allocate a huge amount of GPU 
memory at a time. Depending on the properties of the processed 
dataset, this could even cause the execution to fail due to excessive 
memory requirements.

3. Batched approach. This would be a trade-off between the two 
previous options. We could try to reduce the average overhead by 
using fewer kernels than the “one kernel call per feature” approach, 

while reducing the impact of memory management (allocations 
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Fig. 6. Conceptual comparison of runtimes and overheads of each kind of oper-

ation involved in the CUDA calculation of scores.

and frees) by having fewer features per kernel than with the “sin-

gle kernel call for all features” approach. However, this would lead 
to an additional configuration parameter (the number of features 
per batch) with a significant impact on performance that would 
depend on the properties of each dataset.

Fig. 6 illustrates the differences among the approaches. Note that 𝐹
refers to the number of features in the dataset and 𝐵 to the batch size 
(given that 1 < 𝐵 < 𝐹 ). Two bars are shown for each batch configura-

tion: the highest one shows a timeline view for the duration of each 
operation, while the shortest one displays the aggregate times of each 
kind of operation. The chart clearly shows that a smaller batch spends 
less time with memory allocations and deallocations, while a larger one 
reduces overhead and enhances kernel performance (it better exploits 
GPU parallelism). It is also easy to see how the batched approach is an 
intermediate case that, if balanced, can outperform both extreme cases 
in overall runtime. Therefore, a batch size that provides a compromise 
between low overhead highly parallel executions and low memory allo-

cations should be selected.

In order to achieve adaptability, the number of features per batch 
is left as a configuration parameter to the user. This way, the execu-

tion can be tuned depending on the properties of the dataset and also 
adapted to other CUDA architectures that potentially have different ra-

tios between computation and memory performance.

4.1.3. Custom GPU memory management

Even with the batched approach, there is still room to optimize 
memory accesses. As explained before, we need to allocate and free 
memory for the histograms of the features that are packed in each batch, 
but these memory operations come with a performance overhead. The 
cuFEAST implementation of mRMR includes a custom memory man-

agement system based on pools: instead of using cudaMalloc and

cudaFree at the beginning and end of each batch processing, a pool of 
memory is allocated at the beginning and deallocated at the end of the 
whole execution, and it is just reset before launching each batch kernel.

Note that this approach works because a top limit for the amount 
of required memory per batch can be estimated beforehand. The maxi-

mum can be estimated as 𝐵×(𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋 )) +𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋 )) × 𝑙𝑒𝑛(𝐶𝐿) ×
𝑑, where 𝐵 is the batch size, 𝐶𝐿 is the histogram of the last selected 
feature, 𝑚𝑎𝑥(𝑙𝑒𝑛(𝐶𝑋 )) is the maximum length of the histogram of any 
variable 𝑋 in the dataset (usually equal to the #𝑏𝑖𝑛𝑠 used for dis-

cretization), and 𝑑 is the size (in bytes) of the data type used for the 
6

histograms.
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Fig. 7. Comparison of the processing using a synchronous and an asynchronous 
(with 𝑆 streams) approach.

Regarding memory requirements, cuFEAST uses uint16 for the his-

tograms, so these requirements are reduced to a half if compared to the 
32-bit uint. Moreover, the original C implementation in FEAST saves 
in memory both the histograms with counters (32-bit uint) and proba-

bilities (64-bit float64), so the real reduction is higher (from 96 bits to 
just 16 bits per element). However, as a side effect, the maximum value 
that can be represented is 216 − 1 = 65535, so it is possible that over-

flow occurs for datasets with #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 > 65535. This is only common 
for the class histogram, since it usually takes values from a low amount 
of possibilities (i.e., the number of classes). So, in order to avoid this 
particular error, the class histogram still uses 32-bit uints.

Being able to compute the amount of memory needed by the his-

tograms of a feature with a simple operation based on its length helps 
to optimize even more the behavior of the memory pool. It is common 
that the actual size of the memory space required for the histograms 
of some features is lower than the maximum. Therefore, there would 
be allocated but uninitialized space in the pool. Since the computa-

tion of larger batches is more efficient (the drawback is the overload of 
memory operations), cuFEAST uses this uninitialized space to fit more 
features in the batch, allowing to compute more features without adding 
memory operation overload.

4.1.4. Asynchronism

In a system with a GPU, there are usually three “units” that can work 
simultaneously: host CPU, GPU compute engine, and GPU transfer en-

gine. cuFEAST uses CUDA streams to overlap the work of all units in 
a pipelined structure. Specifically, the overlapped work is the prepara-

tion of the batch (CPU), the transfer of batch data (GPU transfer) and 
the kernel execution (GPU compute). Fig. 7 shows a comparison of the 
resource usage between a synchronous and an asynchronous approach. 
The batches are distributed cyclically among streams: when using 𝑆
streams, a batch 𝐵𝑏 would be processed in the stream 𝑏 mod 𝑆 .

Ideally, the configuration that achieves the best performance would 
be to use one stream per batch. But, in practice, the management of a 
high number of streams increases memory consumption: each stream 
needs its own memory space so that memory requirements rise linearly 
with the number of streams. Therefore, the number of streams is a pa-

rameter that also impacts performance and, as it multiplies the required 
memory allocation, the variations in performance will be linked to the 
batch size (as will be shown in Section 5.3.1). Again, the number of 
CUDA streams used for the asynchronism is left to the user as a config-

uration parameter, so that the execution can be tuned according to the 
specific properties of each dataset and CUDA architecture.

4.1.5. Shared memory

In the kernel explained so far the histograms are stored in the global 
memory of the GPU. This type of memory is the largest but slowest one 
in the CUDA memory hierarchy, so cuFEAST tries to take advantage 
of faster memories. This is the case of shared memory, since accesses 
are about 10x faster than in global memory and it is accessible from 
all the threads in each block (remember that cuFEAST launches one 

block of threads per feature, so only that block would need to access its 
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own shared memory). However, besides being faster, shared memory is 
much smaller than global (e.g., up to 64 KB per block for the Turing 
microarchitecture), so it cannot be used for all data structures in all 
scenarios.

A previous optimization, the usage of the uint16 data type for the 
histograms, helps with the reduction of memory requirements, making 
it possible to fit larger histograms in shared memory. The implemen-

tation follows an “adaptive” shared memory usage, which tries to fit 
structures in it while there is remaining free space. The procedure con-

sists of the following steps:

1. cuFEAST obtains a structure with, among other information, the 
amount of shared memory per block.

2. Then, for each feature in the batch, it checks which structures fit 
in shared memory:

2.1. First, it checks the size of the bidimensional histogram, since 
it is the most accessed one. If this histogram fits, it is created 
and processed in shared memory.

2.2. Second, it checks for the unidimensional one.

3. Finally, the CUDA kernel uses global or shared memory depending 
on the results from the previous steps.

Therefore, there are four possible scenarios (ordered from best to 
worst performance):

1. Both histograms fit in memory.

2. The bidimensional histogram fits, but not both, so the unidimen-

sional one uses global memory.

3. The bidimensional histogram does not fit, so it uses global memory, 
but the unidimensional one fits in shared memory.

4. Both histograms need more space than available in shared memory, 
thus they are created in global memory.

Note that we first try to fit the largest histogram (the bidimensional 
one) in shared memory, since it is the most accessed one. During their 
creation, both the unidimensional and bidimensional histograms are 
written NS times, where NS is the number of samples in the dataset. 
However, the difference appears during the computation of the MI, 
since all positions of both structures are read. Therefore, the bidimen-

sional histogram should be prioritized to use shared memory.

We have previously seen how the maximum amount of required 
memory per feature (i.e., per CUDA block) can be calculated. Note that 
the size of the histograms is limited by the bins used for the discretiza-

tion, so the user can assert that shared memory will be used for both 
histograms when (#𝑏𝑖𝑛𝑠 + #𝑏𝑖𝑛𝑠2) × 𝑑 < 𝑠ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘, where 
𝑑 is equal to 16 bits and 𝑠ℎ𝑎𝑟𝑒𝑑𝑀𝑒𝑚𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 depends on the GPU 
microarchitecture.

Furthermore, shared memory can work together with the custom 
memory management (see Section 4.1.3) to improve performance even 
further. When the histograms of a certain feature fit in shared memory, 
they do not consume any space of the allocated pool, so that space can 
be used to pack additional features in the batch, improving its workload. 
The implementation works as follows:

• Host side. An offset to a pointer (offset_pointer) is assigned 
to the CUDA block to know what space to use. When computing 
the offsets and memory sizes of each feature, if a histogram fits in 
shared memory, the pointer is set to null. Otherwise, it stores the 
address of global memory that the block will use.

• CUDA kernel side. When the CUDA block starts the execu-

tion, it checks the value of the offset_pointer. If it is null, 
then shared memory is initialized (in parallel) and used for 
the histograms. Otherwise, the memory area pointed by off-
7

set_pointer (which is already initialized) is used.
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Algorithm 4: Computation of the merged state 𝑋𝐿 of two vari-

ables 𝑋 and 𝐿.

Input: Feature 𝑋; last selected feature 𝐿; number of samples 𝑁𝑆

Output: Merged state 𝑋𝐿

1 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← (𝑚𝑎𝑥(𝑋), 𝑚𝑎𝑥(𝐿))
2 𝑚𝑎𝑝 ← 𝑧𝑒𝑟𝑜𝑠(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)
3 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 ← 0
4 for index 𝑖 ∈ [0, 𝑁𝑆 − 1] do

5 𝑝𝑜𝑠 ← (𝑋𝑖, 𝐿𝑖)
6 if 𝑚𝑎𝑝𝑝𝑜𝑠 = 0 then

// first appearance of the state

7 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 + 1
8 𝑚𝑎𝑝𝑝𝑜𝑠 ← 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠

end

9 𝑋𝐿𝑖 ←𝑚𝑎𝑝𝑝𝑜𝑠

end

4.1.6. Complexity analysis

Although the mRMR algorithm is too dependent on the properties 
of the dataset, we can estimate its complexity. First, the number of 
CUDA blocks that are executed can be expressed as 𝑂(𝑘 ∗ 𝐹 ), where 𝑘
is the number of features to select and 𝐹 the number of features in the 
dataset. Then, the complexity of the workload of each block is given by 
Θ(NS) +𝑂(#bins2), where 𝑁𝑆 is the number of samples in the dataset 
and #𝑏𝑖𝑛𝑠 the number of bins used for the discretization. Note that the 
first term, Θ(NS), corresponds to the creation of the histograms, and the 
second one, 𝑂(#bins2), to their processing.

Therefore, the overall complexity can be expressed as 𝑂(𝑘 ∗ 𝐹 ) ∗
(Θ(NS) +𝑂(#bins2)).

4.2. CUDA implementation for JMI

It was previously explained that the three methods addressed in 
this work (mRMR, JMI and DISR) share a common structure (see Algo-

rithms 2 and 3). However, JMI and DISR have an additional step before 
the MI computation (see Fig. 3). While in mRMR the MI was computed 
between two features of the dataset, in JMI and DISR there are three 
features involved. Hence, four steps arise in JMI:

1. Merge arrays. Two features must be merged in order to obtain a 
new one that represents the “joint” state of both variables. For a 
feature 𝑋 and the last selected one 𝐿, we refer to the merged state 
as 𝑋𝐿.

2. Histogram creation. Same as in mRMR, but instead of using vari-

ables 𝑋 and 𝐿, the merged one 𝑋𝐿 and the dataset class 𝑌 must 
be used.

3. Conversion to probabilities. Same as in mRMR.

4. Histogram processing. Same as in mRMR.

First, we need to understand how the original C function to merge 
arrays (already presented in Fig. 3) works in FEAST. This operation is 
used to compute the joint state of two variables, which is then used to 
calculate the JMI score. Each unique pair of 𝑋 and 𝐿 constitutes a state 
of 𝑋𝐿 (i.e., 𝑋𝐿𝑖 represents (𝑋𝑖, 𝐿𝑖)). Note that 𝑋𝐿 will therefore have 
the same length as 𝑋 and 𝐿 (the number of samples of the dataset, 
denoted by 𝑁𝑆).

In terms of implementation, the computation of the joint state of 
two batches needs a bidimensional memory structure (“merge map” 
from now on). This way, cuFEAST can track whether each pair (𝑋𝑖, 𝐿𝑖)
appears more than once. That is, each possible combination of values of 
𝑋 and 𝐿 is represented univocally by one and just one position of the 
map. Note that the map needs to have a dimension of 𝑚𝑎𝑥(𝑋) ×𝑚𝑎𝑥(𝐿). 

The procedure to compute 𝑋𝐿 is detailed in Algorithm 4.
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Fig. 8. Flow diagram for the critical read/read-and-update operation used in 
the CUDA implementation of merge arrays.

4.2.1. CUDA kernel

A naive CUDA approach for JMI would consist of dividing the work-

load into two kernels. First, all the 𝑋 features would be merged with 
𝐿 to create a new dataset of merged features, and then a second ker-

nel would compute the MI as in mRMR. However, this approach would 
increase the overhead of the kernel launches, as well as memory re-

quirements.

Therefore, a custom operation that joins the first two steps of JMI 
into a single one was developed, merging the features “on the fly” and 
contributing to the histogram creation. This operation avoids having to 
allocate an extra structure with the same size of the dataset, and reduces 
global memory reads and writes.

The CUDA kernel for JMI implements all the steps involved in the 
computation of the scores in just two stages:

• Merge arrays. Each thread 𝑇 is responsible for the same position 
in both variables (𝑋𝑡 and 𝐿𝑡). Once read, the values of the vari-

ables are used to compute the position in the merge map. This map 
is read (and updated if the state appears for the first time), and this 
way the value of the joint state 𝑋𝐿𝑡 is known. However, as this 
value is read only once for the histogram creation, instead of stor-

ing it, the thread updates the histograms accordingly (i.e., from the 
values 𝑋𝐿𝑡 and 𝑌𝑡).

• Histogram processing. It is implemented as for mRMR. Remember 
that a synchronization is required before starting this stage.

The creation of the merge map is a critical task, since several threads 
can try to access the same position of the map simultaneously. There-

fore, these memory operations must be performed atomically. A novel, 
fast, and lightweight atomic operation has been developed to reduce 
the synchronization overhead. This procedure is illustrated by the dia-

gram shown in Fig. 8 and detailed in Algorithm 5. This operation avoids 
heavier synchronization functions (such as kernel-level) and reduces 
memory usage and the complexity of using mutexes. Each map posi-

tion is written at most once (when its value is 0, as shown in line 6 
of Algorithm 4), and then race conditions must be avoided only when 
two threads reach an unused position for the first time. The atomicCAS 
: (address, compare, value) → (old) CUDA function is used for it. This 
operation computes atomically23:

*address = ((old == compare) ? value : old)

and returns old. Two of the parameters are simple. On the one hand, 
the address is already known. On the other hand, compare is set to 0 as 
the map must only be written when the original value is still 0.

However, working with old and value is more tricky. In order to track 
the new states, a counter (𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠) is used, which must be shared 

2 Note that CUDA atomic operations are not available for architectures prior 
to Kepler.

3 For the implementation, the atomic operation variants with a “_block” 
suffix were used because their performance is better and data consistency is 
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maintained since they are atomic at a block scope.
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Algorithm 5: Concurrent-safe implementation of merge arrays 
for a thread 𝑇𝑡.

Input: Feature 𝑋; last selected feature 𝐿; number of samples 𝑁𝑆 ; 
shared merge map 𝑚𝑎𝑝; shared state counter 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠

Output: Safe value of the joint state 𝑋𝐿𝑡

1 𝑝𝑜𝑠 ← (𝑋𝑡, 𝐿𝑡)
2 repeat

// atomically read position

// try to set it to “being initialized” if “uninitialized”

3 𝑣 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐶𝐴𝑆(𝑚𝑎𝑝𝑝𝑜𝑠, 0, 𝑁𝑆 + 1)

// retry if position was “being initialized”

until 𝑣 >𝑁𝑆

4 if 𝑣 = 0 then

// position is “being initialized” by 𝑇𝑡 (current thread)

// add new state - atomic

// other thread could be doing the same for a different 𝑝𝑜𝑠
5 𝑣 ← 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑(𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠, 1)

// 𝑇𝑡 can safely update the map position, no other threads

// will write it
6 𝑚𝑎𝑝𝑝𝑜𝑠 ← 𝑣

else

// nothing to do; position already initialized

end

// now 𝑣 holds the value of 𝑋𝐿𝑡 and can be used safely

among CUDA threads. Therefore, two shared variables (the map posi-

tion and the counter) must be updated at once every time a thread finds 
a new state, so the atomicCAS function is not enough. To solve this prob-

lem, the memory position is used as a mutex to avoid race conditions. 
This way, when a thread reaches a position, its value can be “unini-

tialized”, “being initialized” or “already initialized”, and its action has 
to be “initialize the position”, “wait until position is initialized” or “do 
nothing and continue”, respectively. Since the map is set to zero at the 
beginning, a position that stores a zero can be considered as “uninitial-

ized”. However, other values are necessary to represent the other two 
states. When a state appears for the first time, the merge map saves the 
state index (which starts at one to avoid confusion with an “uninitial-

ized” position). Note that the counter must also be updated atomically 
(in this case with atomicAdd). So, each position of the map stores the in-

dex of a distinct joint state, and the number of distinct states is limited 
by the number of samples (a used position will hold a value in [1, 𝑁𝑆]). 
Therefore, any map position with a value in that range will be consid-

ered as “already initialized”. Finally, 𝑁𝑆 + 1 is used to represent the 
“being initialized” state.

4.2.2. Batch processing and asynchronism

The same approach for batch processing and asynchronism already 
explained in Sections 4.1.2 and 4.1.4, respectively, has been applied 
to JMI. The only difference is that this method needs an additional 
memory structure (the merge map) and so the optimal batch size might 
vary from mRMR.

4.2.3. Custom GPU memory pool

The memory pool and its custom management presented for mRMR 
in Section 4.1.3 can also be applied to JMI. However, due to the fact 
that there is an additional step (merge arrays) previous to the MI com-

putation, there is an aspect that must be taken into account. While for 
mRMR the size of the histograms can be calculated in advance before 
launching the kernel, it is not possible for JMI due to the fact that the 
size depends on the outcome of the merged array. Thus, the optimiza-

tion of packing more features per batch to further improve performance 
cannot be applied here since we cannot assure whether allocated mem-
ory of the pool is left unused.
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Table 1

Maximum theoretical sizes of the data structures used in each algo-

rithm for a given number of samples and number of bins. Sizes are 
indicated in number of elements.

𝑁𝑆 #𝑏𝑖𝑛𝑠 mRMR JMI

1D 2D map 1D 2D

2,000 64 64 4,096 4,096 2,000 128,000

128 128 16,384 16,384 2,000 256,000

256 256 65,536 65,536 2,000 512,000

20,000 64 64 4,096 4,096 4,096 262,144

128 128 16,384 16,384 16,384 2,097,152

256 256 65,536 65,536 20,000 5,120,000

However, an upper bound must be calculated in order to know 
the total memory size allocated for the pools. As mentioned above, 
the size of the histograms depends on the merged array, specifically 
on its maximum value. Given a feature 𝑋 and the last selected one 
𝐿 with 𝑁𝑆 samples, we already know that the resulting joint state 
𝑋𝐿 also has length 𝑁𝑆 . Moreover, the merge map has a position 
for each possible combination of values between 𝑋 and 𝐿, so its size 
would be 𝑚𝑎𝑝_𝑠𝑖𝑧𝑒 = 𝑚𝑎𝑥(𝑋) ×𝑚𝑎𝑥(𝐿). As previously seen, during the 
merge arrays step the state values are assigned sequentially, so we 
know that 𝑚𝑎𝑥(𝑋𝐿) is a value between one (all states are equal) and 
𝑚𝑖𝑛(𝑁𝑆, 𝑚𝑎𝑝_𝑠𝑖𝑧𝑒) (all states are different).

Now, the maximum size of the histograms can be calculated. Re-

member that in JMI the score of a feature 𝑋, given the last selected one 
𝐿, is computed as the MI between the class 𝑌 and 𝑋𝐿 (the joint state 
of 𝑋 and 𝐿). The size of the bidimensional histogram can be computed 
as the product of the sizes of the unidimensional ones. That is, the one 
of the class 𝑌 (size 𝑚𝑎𝑥(𝑌 )), and the one of the joint state 𝑋𝐿 (size 
𝑚𝑎𝑥(𝑋𝐿) =𝑚𝑖𝑛(𝑁𝑆, 𝑚𝑎𝑥(𝐿) ×𝑚𝑎𝑥(𝑋))). Therefore, the maximum size 
of the bidimensional histogram would be:

𝑚𝑎𝑥(𝑌 ) ×𝑚𝑖𝑛(𝑁𝑆,𝑚𝑎𝑥(𝐿) ×𝑚𝑎𝑥(𝑋)) (9)

A comparison of the maximum sizes for each data structure when 
using different numbers of bins and samples is provided in Table 1.

Due to the discretization, the maximum value of a feature is lim-

ited by the number of bins (#𝑏𝑖𝑛𝑠). Therefore, the required memory 
for the bidimensional histograms of a batch of 𝐵 features would be 
𝐵 × 𝑚𝑎𝑥(𝑌 ) × 𝑚𝑖𝑛(𝑁𝑆, #𝑏𝑖𝑛𝑠2) × 𝑑, where 𝑑 is the data size (16 bits). 
Note that 𝑚𝑎𝑥(𝑌 ) is constant for the dataset, so cuFEAST precomputes 
and uses it instead of its theoretical maximum of #𝑏𝑖𝑛𝑠.

4.2.4. Shared memory

cuFEAST modifies the “adaptive” approach explained for mRMR in 
Section 4.1.5 so that it can efficiently work with JMI. The main differ-

ence is that JMI has an additional memory structure (the merge map) 
that can also be stored in shared memory. Obviously, the ideal case 
would be to fit all three structures (the merge map and the two his-

tograms) in shared memory, but, due to the large size of the merge map 
and the bidimensional histogram, mostly only one of them fits. The 
cuFEAST implementation of JMI gives the highest priority to the merge 
map as this worked best in most of the scenarios we tested. Therefore, 
the adaptive strategy in JMI tries to fit the structures in shared mem-

ory in this order: merge map, bidimensional histogram, unidimensional 
histogram.

4.2.5. Complexity analysis

The complexity of the JMI algorithm also depends on the input data, 
even more critically than mRMR. The number of CUDA blocks is the 
same as in mRMR, 𝑂(𝑘 ∗ 𝐹 ), where 𝑘 is the number of features to select 
and 𝐹 the number of features in the dataset. However, the workload 
of each block is different now, since JMI includes the step of merg-

ing arrays. The complexity of the work performed by each CUDA block 
9

is Θ(NS) +𝑂(#bins ∗ min(NS, #bins2)). The first term corresponds to the 
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Fig. 9. Comparison of sequential and CUDA implementations of histogram pro-

cessing for H.

array merging and histogram creation, and the second term to the pro-

cessing of histograms.

Therefore, the overall complexity would be 𝑂(𝑘 ∗ 𝐹 ) ∗ (Θ(NS) +
𝑂(#bins ∗ min(NS, #bins2)).

4.3. CUDA implementation for DISR

As previously explained, the DISR method works similarly to JMI, 
but the computation of the entropy (H) is also necessary (see Fig. 3). 
A major advantage is that the entropy, besides having less arithmetic 
complexity, makes use of one of the structures that are also generated 
to calculate the MI: the bidimensional histogram. Fig. 9 shows the con-

ceptual differences between the sequential and CUDA implementations 
of the entropy calculation (compare with Fig. 5 to see the implemen-

tation differences with the histogram processing for MI). Since both MI 
and H are needed for DISR, cuFEAST uses the same bidimensional his-

togram for the computation of both metrics.

The implementation of DISR is, therefore, almost the same as JMI. 
The only difference is reflected in the modification of the CUDA kernel, 
so that the threads compute both MI and H from the created histograms. 
Apart from that, in order to maintain consistency with the mRMR and 
JMI kernels, DISR returns only one value per feature (instead both MI 
and H). This value is 𝑀𝐼

𝐻
, as can be seen in Equation (5). Note that, due 

to their only slight differences, the complexity of DISR is the same as 
that of JMI (see Section 4.2.5).

4.4. Adaptation to fixed point

Section 3.4 introduced a variant of the MI calculation for fixed-point 
data. This idea was presented in [20] for low-end devices (e.g., wear-

ables), but it can potentially help to enhance performance on modern 
Nvidia GPUs. This approach consists in avoiding the high computational 
cost of logarithms and floating-point arithmetic by using a look-up table 
(i.e., memory accesses) and integer arithmetic.

As explained in Section 3.4, the look-up table is key to compute the 
MI with fixed point, so it must be created beforehand. Nevertheless, 
the cuFEAST implementation includes the following modifications with 
respect to the original approach [20], as GPUs have different character-

istics to low-end devices:

• No limit on table size. Low-end devices have less memory than 
modern Nvidia GPUs, so cuFEAST can afford to have larger tables 
and reduce some computation overhead in the precision conver-

sion. Specifically, counter halving and index correction (see [20]

for a detailed explanation of these terms) can be suppressed. Note 
that, due to this change, the table in the GPU will be unidimen-

sional since only one value (the number of samples of the dataset, 
𝑁𝑆) is used as secondary indexing term (variable 𝑗 is always equal 
to 𝑁𝑆 in Equation (8)). Therefore, the look-up table will have a 
size of 𝑁𝑆 elements.

• Computation instead of precomputation. The authors of [20]
proposed to calculate the look-up table only once for each device, 
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Table 2

Characteristics of the datasets (size is calculated using 8B 
per value).

#Features #Samples #Classes Size

MNIST 780 60,000 10 0.36 GB

Epsilon 2,000 400,000 2 6.96 GB

RCV1 47,236 20,242 2 7.12 GB

News20 62,061 15,935 20 7.37 GB

store it on disk and read it prior to each FS execution. However, 
since the computation of the table is cheap when performed on HPC 
systems, cuFEAST computes it at the beginning instead of reading 
a cached copy stored on disk.

• No fixed-point data types. The original approach represents the 
elements of the table with a fixed-point data type. However, such 
type does not directly exist in the GPU hardware, so the algorithms 
must be adapted to work with integers. This was achieved by de-

laying the conversion from integer to fixed point from the table 
creation to the use of the data. Specifically, Equation (8) is modi-

fied as follows:

𝐿′(𝑖, 𝑗) =
[
log(𝑖∕𝑗)

𝑞

]
𝑅

(10)

Then, when needed for the computations, data is converted back to 
floating point as:

𝑑𝑓𝑙𝑜𝑎𝑡 =𝐿′(𝑖, 𝑗) ⋅ 𝑞 (11)

• Adaptive precision distribution. The original approach is generic 
for the use of an arbitrary number of bits for both the integer and 
fractional parts of the number. However, cuFEAST only implements 
fixed-point algorithms with uint16 data for the look-up table. This 
choice was based on the experimental evaluation of [20], which 
proves that a 16-bit width provides accuracy high enough when 
compared to high-precision floating-point values, while keeping a 
low number of bits. Nevertheless, the 16 bits must still be split 
between the integer and fractional parts. cuFEAST includes a so-

lution consisting of a dynamic approach where the precision is 
determined by the dataset properties, in order to achieve the best 
possible results. That is, it chooses a precision with no more than 
the bits needed to represent the highest possible value in order to 
leave as many bits as possible for the fractional part.

The computations that use logarithms are executed within the GPU 
kernels, whose adaptation to fixed point required to make the look-

up table available in memory to the CUDA threads. Consequently, it is 
transferred to the global memory of the device. Then, the fixed-point 
approach allows to substitute multiplications, divisions and logarithms 
by additions, subtractions and memory accesses.

5. Experimental evaluation

Four publicly available datasets with different characteristics (sum-

marized in Table 2) have been used for the experimental evaluation. 
They were all obtained from the LIBSVM collection [8]. MNIST and

Epsilon are multiclass and biclass datasets, respectively, with more 
samples than features, while RCV1 (biclass) and News20 (multiclass) 
present more features than samples. Since the values of these datasets 
are continuous a discretization with 128 bins (a quite common scenario) 
has been applied. Although additional experiments with 256 bins were 
run, they are not included in this section for simplicity as the conclu-

sions drawn from them are similar.

Two Nvidia GPUs from different generations (Turing T4 and Ampere 
A100), whose characteristics are shown in Table 3, were used for the 
experimental evaluation. The GPUs are installed in two CPU systems, 
10

Pluton and FinisTerrae III, whose characteristics are listed in Table 4. 
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Table 3

Characteristics of the GPUs.

T4 A100

Microarchitecture Turing Ampere

Number of SMs 40 108

Number of cores 2560 6912

Core frequency (MHz) 585 765

Global memory size (GB) 16 40

Shared memory size (KB) 64 163

Memory bandwidth (GB/s) 320 1555

Table 4

Characteristics of the systems containing the GPUs.

Pluton FinisTerrae III

CPU 2 x Intel Xeon Silver 2 x Intel Xeon

4216 Cascade Lake-SP Ice Lake 8352Y

Cores/CPU 16 32

Total Cores 32 64

RAM 256 GiB 256 GiB

GPU Nvidia T4 Nvidia A100

These CPUs were also used to execute the sequential and multithreaded 
counterparts of mRMR, JMI and DISR available in FEAST4 and Parallel-

FST [4], respectively, whose performance will be compared to that of 
cuFEAST. The sequential implementations have also been used to prove 
the correctness of the numerical results as our CUDA codes select ex-

actly the same features. We can assume that the results are correct as 
FEAST has been widely used and tested by researchers from different 
fields of computational science. The output of the low-precision fixed-

point approaches has been compared to that of a new sequential C++ 
implementation developed by the authors following the instructions ex-

plained in [20]. This paper includes a detailed accuracy evaluation of 
the methods with low precision, concluding that the use of 16 bits in 
FS methods (as in our CUDA fixed-point implementations) is enough to 
select features with the same quality as double-precision versions.

The number of selected features has been fixed to 200. This number 
is high enough to show the impact of discarding the selected features 
from the candidate list, and not too large to avoid selecting an extremely 
high number of features, which will never be the case in a real scenario. 
Additionally, the speedup of the CUDA-based implementations with re-

spect to the sequential counterparts does not depend on the number of 
selected features as the parallel approach is repeated for every feature 
selected (see dashed outline in Fig. 2).

The CUDA implementations have been executed with different con-

figurations of batch size, number of streams, and number of threads 
per block. The speedups shown in the following subsections were cal-

culated using only the runtime of the best configuration, but some 
insights about the impact of these parameters will be provided in Sec-

tion 5.3. Also note that all the GPU times shown in this section include 
the time for data transfers between GPU and CPU, as well as the time 
needed to create the look-up table in the case of fixed-point versions. 
We have repeated five times each experiment, discarding the maximum 
and minimum values, and providing as runtime for each configuration 
the average of the three intermediate results. This prevents outliers from 
influencing our evaluation. It means that more than 60,000 executions 
were performed in this experimental evaluation.

Regarding the fixed-point version of the algorithms, Table 5 shows 
the fractional bits, sizes and generation times of the look-up tables for 
each dataset and CPU. Note that generation times are shown in millisec-

onds and are negligible when compared with FS runtimes.
4 The latest available version of FEAST (v2.0.0) was used.
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Fig. 10. Comparison of the runtimes with and without exploiting the shared memory of the GPUs. Darker colors are used for versions that do not exploit shared 
memory.
Table 5

Bit distribution, sizes and generation times of the look-up tables for low-

precision fixed-point executions.

Dataset Fractional bits Table size (KB) Time (ms)

Cascade Lake-SP Ice Lake

MNIST 12 117.19 1.70 1.24

Epsilon 11 781.25 10.50 7.25

RCV1 12 39.54 0.66 0.54

News20 12 31.12 0.78 0.46

5.1. Impact of shared memory

The mRMR, JMI and DISR methods have been adapted to exploit 
the shared memory available in the GPUs, which involved significant 
modifications to their implementations, as was explained throughout 
Section 4. The experimental evaluation started by proving that the use 
of shared memory is beneficial for the MI-based FS methods. Fig. 10

compares the runtimes (in seconds) of the three implementations that 
only use global memory versus the three that exploit shared memory, 
for the two GPUs, the four datasets, and the double-precision and fixed-

point versions. As mentioned above, the runtimes shown in the graphs 
are those obtained with the best combination of batch size, number of 
streams, and number of threads per block for each case.

The main conclusion that can be drawn from these results is that 
the version with shared memory is clearly beneficial. Its impact on 
11

performance heavily depends on the hardware, the method, and the 
characteristics of the dataset. For instance, on the A100 GPU it is on av-

erage 32% faster than the version that only uses global memory, while 
this percentage drops to 21% for the T4 GPU. The reason is that the 
A100 has much more shared memory than the T4 (see Table 3). Re-

garding the methods, the use of shared memory has a greater impact 
for mRMR (on average, 49% faster than the global memory version), 
while for JMI and DISR the average benefit remains at 16% and 15%, 
respectively. This difference can be explained because mRMR can better 
exploit the memory pools, as its implementation is able to use uninitial-

ized space to fit more features in the batch (see Section 4.1.3). Another 
conclusion is that the higher the number of samples in the dataset, the 
higher the benefit of using shared memory. For instance, the average 
runtime reduction over the global memory version when working with 
the Epsilon dataset (400,000 samples) reaches 41%, while it drops 
to 20%, 22% and 23% when selecting features of MNIST, RCV1 and

News20, respectively. Finally, we can also conclude that the precision 
of the algorithms (double or fixed) does not influence the impact of 
using shared memory.

5.2. Comparison with the state of the art

Once we have proved that the CUDA implementation that makes use 
of shared memory obtains the best performance, this section compares 
it with the state of the art. First, Fig. 11 shows the speedup obtained 
by this version of the CUDA codes over their sequential counterparts 
available in FEAST. The speedups for each GPU are calculated related 

to the sequential time when running the FEAST implementations on 



Journal of Parallel and Distributed Computing 190 (2024) 104901B. Beceiro, J. González-Domínguez, L. Morán-Fernández et al.

Fig. 11. Speedups obtained by the CUDA implementations (using shared memory) over the sequential C codes.
Table 6

Runtime (in seconds) of the sequential implementations available 
in FEAST (C version).

mRMR JMI DISR

Pluton MNIST 44.79 93.62 143.40

(Cascade Lake-SP) Epsilon 647.35 1317.74 1971.80

RCV1 943.51 1396.39 2031.61

News20 1025.16 1372.20 2064.09

FinisTerrae III MNIST 39.37 66.54 104.40

(Ice Lake) Epsilon 514.01 1034.83 1560.73

RCV1 1043.86 1253.14 2010.77

News20 1129.98 1316.60 2091.47

their corresponding host CPUs (Cascade Lake-SP for the T4 and Ice Lake 
for the A100). Table 6 shows these sequential runtimes (in seconds) 
for each CPU, method and dataset. All the experiments for the CUDA 
version with low-precision fixed point were executed with 16 bits, as 
suggested in [20].

The results shown in Fig. 11 prove that our CUDA implementations 
are significantly faster than the original sequential codes in all scenar-

ios. The magnitude of the acceleration depends on several factors:

• The GPU hardware. The speedups achieved on the A100 (132x 
on average) are always higher than on the T4 (48x on average). 
This proves that the CUDA implementations efficiently exploit the 
resources available in modern GPUs. As can be seen in Table 3, the 
A100 not only includes more cores, but also these cores and the 
memory transfers are faster (higher memory bandwidth).

• The FS method. Although mRMR is the fastest method even in its 
sequential implementation, it is the one that better adapts to the 
GPU, obtaining an average speedup of 118x (with a 283x peak for 
the Epsilon dataset on the A100). Nevertheless, DISR and JMI are 
also very suitable for GPUs, reaching speedups of up to 193x and 
127x, respectively.

• The input dataset. The highest speedups are achieved for Ep-
silon (137x on average), the dataset with the largest number of 
samples. The behavior of RCV1 and News20 is quite similar, with 
average speedups of 89x and 74x, respectively, while MNIST ob-

tains the worst results (average speedup of 59x). The reason is not 
a poor implementation of the methods but the low computational 
requirements for the analysis of this dataset (it is the smallest one). 
Note that all CUDA implementations complete the FS on MNIST in 
less than three seconds.

• The precision. The low-precision fixed-point versions of the algo-
12

rithms are faster than their double-precision counterparts in 94% 
of the experiments. The low-precision version achieves an aver-

age improvement in runtime of 23%, 6% and 8% for mRMR, JMI 
and DISR, respectively. Note that the runtime improvement is not 
impressive, since this optimization not only involves changing the 
data type, but also introduces suboptimal memory accesses (ran-

dom reads). Furthermore, the optimization only applies to a limited 
section of the program, so the speedup of the entire algorithm is 
less than that of the optimization itself.

Summarizing, the CUDA implementations presented in this paper 
efficiently exploit the GPU hardware and are able to obtain speedups 
of up to 283x and 128x when executing the mRMR method with 16-

bit fixed point over the Epsilon dataset on the A100 and T4 GPUs, 
respectively. Regarding the runtime, the FS was completed in less than 
20 seconds for any method and dataset on the A100, and in around one 
minute in the worst case for the T4, which is a huge reduction compared 
to sequential runtimes of up to 35 minutes.

We have compared the performance of the GPU versions in cuFEAST 
with the multithreaded versions available in our Parallel-FST li-

brary [4]. The number of cores available varies by system and the 
multithreaded versions were run with one thread per core (32 threads 
in Pluton and 64 threads in FinisTerrae III, according to Table 4). 
The speedups of the cuFEAST and Parallel-FST versions with respect 
to the sequential version on the corresponding host system are shown 
in Fig. 12. Although the multithreaded versions achieve high parallel 
efficiency, the further optimizations present in cuFEAST make the GPU 
versions achieve far superior speedups.

As mentioned in Section 2, CUDA-JMI [16] is, up to our knowledge, 
the only available implementation in the state of the art for FS on GPUs. 
Table 7 compares the runtime (in seconds) of CUDA-JMI and our novel 
JMI implementation on the two GPUs for the four datasets, only for the 
double-precision version, as CUDA-JMI is not able to work with low-

precision (16 bits) fixed point. First, note that CUDA-JMI failed when 
working with the MNIST dataset due to an inefficient use of memory 
that makes it run out of memory. For the other datasets our imple-

mentation is, on average, around 11 and 41 times faster on the T4 and 
A100, respectively, proving that it is better suited to the most modern 
and powerful GPUs. This runtime improvement is due to the exploita-

tion of the GPU: while CUDA-JMI just computes the MI, cuFEAST tries 
to maximize the use of the GPU by also offloading the merge arrays 
stage. Moreover, cuFEAST includes optimization techniques (those ex-
plained in Section 4.2) that are not present in CUDA-JMI.
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Fig. 12. Comparison of the best speedups obtained by the CUDA implementations (cuFEAST) and the multithreaded versions (Parallel-FST) over the sequential C 

codes.

Table 7

Runtime (in seconds) of CUDA-JMI and our novel 
double-precision implementation of JMI (“-” is a 
failed out-of-memory execution).

Dataset GPU Time (s)

CUDA-JMI cuFEAST JMI

MNIST T4 – 2.80

A100 – 1.17

Epsilon T4 528.24 27.55

A100 475.47 8.19

RCV1 T4 366.73 44.70

A100 531.64 14.187

News20 T4 378.50 67.38

A100 545.56 19.77

5.3. Selection of the configuration parameters

As previously explained, the experimental evaluation carried out 
for this work has been very extensive, with around 60,000 executions, 
testing different configurations of batch size, number of streams and 
number of threads per block. However, all the runtimes presented up 
to now are the best ones for each scenario (i.e., using the best configu-

ration). In this section we provide some insight about which are these 
best configurations.

5.3.1. Batch size and streams

The first version of our CUDA FS code introduced the configuration 
parameter of “block size”, that is, the number of threads that work in 
parallel in a block of a CUDA kernel (remember that just one block 
per feature is launched). However, due to the amount of configuration 
parameters and variability in test executions (distinct datasets, microa-

chitectures, etc.), it is difficult to isolate the impact of the block size. 
Therefore, we have initially tried to find a good configuration for the 
batch size and number of streams, and then, select the block size that 
works best for that case. We introduce the “normalized speedup” met-

ric to provide a fair comparison between configurations, calculated as 
follows:

1. The speedup of each tested configuration is calculated with re-

spect to the sequential implementation available in FEAST as 𝑆cfg =
𝑡𝑖𝑚𝑒𝐹𝐸𝐴𝑆𝑇

𝑡𝑖𝑚𝑒cfg
.

2. Speedups are grouped by GPU type, dataset, algorithm and preci-
13

sion.
3. Speedups are normalized within each group. That is, for a speedup 
of a given configuration 𝑆cfg in a group 𝑔, we compute the normal-

ized speedup metric as 𝑆′
cfg = (𝑆cfg −𝑚𝑒𝑎𝑛𝑔)∕𝑠𝑡𝑑𝑔 . This transforms 

each speedup in a value that can be interpreted as how well a 
configuration performs compared to the others in the same group, 
while maintaining that value in a common range among all groups.

Figs. 13 and 14 show the normalized speedups for configurations 
of different batch sizes and number of streams with double precision 
and low-precision fixed point, respectively. Within each figure, the re-

sults are also separated by GPU and algorithm. Note that each square 
of the heatmap (configuration with a specific batch size and number 
of streams) aggregates the average normalized speedups for the non-

mentioned parameters (i.e., dataset and block size). The figures clearly 
show the negative speedup correlation between using a high/low num-

ber of streams and a low/high batch size. In order to understand this 
correlation, we will examine the advantages and drawbacks of the cases 
in each sector of the heatmaps:

• Top-left: many streams, small batches. The code is capable of 
achieving a good level of asynchronism since there are lots of 
streams and low workload for each batch. Furthermore, the amount 
of memory that needs to be allocated for the pools is not excessive.

• Top-right: many streams, large batches. The amount of memory 
required for the pools is so high that the overhead it introduces 
highly impacts runtime.

• Bottom-left: few streams, small batches. The amount of memory 
required for the pools is really low, but there is a high amount of 
kernel launches which introduces some overhead that influences 
the overall runtime.

• Bottom-right: few streams, large batches. There are fewer kernel 
launches and fewer streams to manage, so the introduced overhead 
is minimum. However, due to this, the code cannot achieve a good 
level of asynchronism. The memory required for the pools is not 
excessive.

Finally, after examining these results, we can conclude that a good 
configuration is a batch size of 256 features and asynchronism with two 
streams. It is recommended as it is a good configuration overall and, in 
some cases, the best one.

5.3.2. Block size

Now that the best configuration for the other parameters is known, 
the impact on performance of the CUDA block size can be measured. 

The number of threads that work concurrently in a CUDA block is rel-
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Fig. 13. Comparison of the average normalized speedups obtained for different combinations of batch sizes and number of CUDA streams (double-precision 
implementation).

Fig. 14. Comparison of the average normalized speedups obtained for different combinations of batch sizes and number of CUDA streams (fixed-point implementa-
14

tion).
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Fig. 15. Comparison of the normalized speedups for different block sizes (number of threads per CUDA block).
evant since each block runs in a physical Streaming Multiprocessor 
(with its own shared memory), so its hardware is shared among the 
block threads. Therefore, on the one hand, codes with threads that re-

quire many resources would be able to achieve more parallelism with 
a smaller block size, while a larger block would cause some threads 
to stall waiting for resources. On the other hand, in codes with more 
lightweight threads, a larger block size would be able to achieve more 
parallelism, while a smaller one would cause some hardware to be idle.

The impact of the block size is depicted in Fig. 15. The same as for 
the batch and streams, the graphs show normalized speedups. However, 
the results presented correspond to the best configuration of batch size 
and number of streams obtained in the previous step, so now each line 
shows the normalized speedup for each case instead of an aggregation 
for several parameters.

The results show that, in general, speedups increase with the block 
size. Specifically, the maximum block size of 1024 threads achieves 
the best speedup in some cases. However, this configuration can cause 
performance drops in some other cases, so a better general recommen-

dation is to use a block size of 512 threads.

5.3.3. General recommendations

It should be noted that the configuration that achieves the best per-

formance would largely depend on the properties of the dataset, as well 
as on the distribution of the values that each feature can take. There-

fore, we can recommend the configurations shown in Table 8 based on 
their overall performance achieved in the experimental evaluation (i.e., 
they might not get the best speedup for a specific case, but work well 
in general).

6. Conclusion

Feature Selection is nowadays a common and extremely important 
step in Machine Learning, especially with the continuous increase in the 
average size of datasets from different fields such as text mining, genet-
15

ics or bioinformatics. Among the many existing methods for FS, those 
Table 8

Recommended configurations with overall good per-

formance for each microarchitecture and algorithm.

Microarch. Algorithm Block Batch Streams

Turing mRMR 1024 64 2

JMI 1024 64 2

DISR 512 64 2

Ampere mRMR 512 256 2

JMI 512 64 8

DISR 512 64 8

based on MI are widely employed. However, FS procedures require long 
computation times for large datasets due to their quadratic complexity 
with the number of features.

This work has presented CUDA implementations for three MI-based 
FS methods: mRMR, JMI and DISR. Two CUDA versions were devel-

oped for each method: one that works with data in double precision 
and another one that uses fixed point and low precision, thus reducing 
the computational requirements at the cost of a slightly lower accu-

racy [20]. All codes are highly optimized with the use of shared mem-

ory, asynchronism through streams and a custom memory pool. The 
extensive experimental evaluation with two Nvidia GPUs, four datasets, 
and multiple algorithm configurations (a total of about 60,000 exe-

cutions) have proved that our implementations are able to efficiently 
exploit the computing resources of modern and powerful GPUs. For in-

stance, all the experiments (even for double precision) finished in less 
than 20 seconds on an Ampere A100 GPU, obtaining speedups of up to 
283x compared to the popular sequential C implementations included in 
the FEAST library. The versions of the algorithms that work with fixed-

point data are also beneficial in terms of performance, since they are 
on average 12% faster than their double-precision counterparts. All the 
CUDA implementations described in this work are publicly available 
at https://gitlab .com /bieito /parallel -fst under a 3-Clause BSD license 

(open source).

https://gitlab.com/bieito/parallel-fst
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As future work we aim to extend our CUDA approach to multi-GPU 
platforms, as well as to other FS methods with the goal of providing a 
broad suite where potential users can choose the parallel algorithms 
that best fit their data and analyses. We will also try to design an 
“autotuning” system that automatically selects the best configuration 
parameters according to the characteristics of the GPU and the input 
dataset.
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