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ABSTRACT

Serverless computing is an emerging paradigm that has gained a lot of relevance in recent years, as it allows
users to consume computing resources without worrying about the underlying infrastructure and pay only for
what they actually use. Most current services that implement this paradigm typically rely on the Function-as-
a-Service (FaaS) model, which works perfectly for simple applications based on stateless functions triggered
by specific events. However, these services are not designed to run more complex applications with intricate
interactions, usually presenting a significant degree of configuration difficulty and/or low ability to customise
the execution environment. They also tend to be designed for short and simple workloads, with some services
even limiting their maximum runtime to just a few minutes. In this paper, we present a platform based on
Hadoop YARN oriented to the execution of Big Data workloads in a containerised and serverless way, so that
the resources allocated to such containers are automatically and dynamically scaled according to their actual
usage. An experimental evaluation has been carried out to compare our serverless-like platform with a standard
YARN deployment when executing Big Data workloads concurrently. Our results have shown experimental
evidence of enhancing both performance and overall resource efficiency, providing runtime reductions and

resource usage improvements of up to 41% and 50%, respectively.

1. Introduction

Serverless computing [1] is today a highly demanded paradigm due
to the growing need for users to run workloads easily, while avoiding
the need to explicitly provision or manage a server, and paying only
for the specific resources consumed when billing is applied. However,
this flexibility requires from the provider: deploying the appropriate
infrastructure to offer the service, continuously managing the available
resources to allow each client to run its applications seamlessly, and
overall minimising the costs during the whole process. This last point
is particularly important because, for example, the overestimation of
resources can lead to underutilisation, which in turn means a loss of
profit as these resources are not billed. Additionally, it is worth consid-
ering the FaaS model [2], the most popular and widespread serverless
approach today, as it allows users to automatically run an application
(or “function”) for which they provide just its code. However, FaaS is
usually very limited to simple workloads, for example a series of single
functions used as event triggers, as well as stateless services that can
be easily scaled [3]. From the user’s point of view, it would be highly
interesting to support a wider variety of use cases, but there is still
little research regarding the execution of more complex applications

* Corresponding author.

in these serverless environments. Examples are workloads with specific
needs such as communication between processes or just with very long
execution times, aspects that are usually limited in public serverless
services.

In this context, it is worth noting the great relevance of Big Data
technologies in many fields, such as healthcare [4] or retail [5]. Cur-
rently, there are several frameworks like Hadoop [6], Spark [7] and
Flink [8], which allow processing the data in a distributed and scalable
manner. One major advantage is their ability to process computation-
ally intensive tasks on commodity hardware by distributing them into
smaller tasks that can be efficiently processed independently. However,
deploying and configuring such distributed computing frameworks may
be complex for inexperienced users. The serverless model can be a vi-
able approach for tackling this issue, while also providing cost benefits
since users would only pay for the resources they actually consume.
Unfortunately, these Big Data frameworks are examples of the appli-
cations previously described as too complex to fit in current serverless
platforms. This is because such platforms usually restrict communica-
tions between tasks or processes, impose specific runtime and memory
limits, and work only with network-based storage, limiting I/O rate
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and slowing down intermediate writes performed by the frameworks.
Furthermore, Big Data workloads are usually resource intensive and
their performance can be negatively affected if the scaling performed
by the serverless platform is not proper.

In this paper we present a platform that automatically deploys
serverless clusters on demand oriented for running Big Data workloads.
These clusters are based on containers to leverage the fast and light
deployment provided by this virtualisation technology. A cluster is
deployed for each application, so that different clusters belonging
to different applications and users can coexist on the same physical
infrastructure at a given time. Furthermore, Infrastructure as Code
(TaC) [9] tools are used to further accelerate and automate both the
cluster deployments and the platform itself. In order to provide end
users with support for a wide range of Big Data workloads, the Hadoop
Yet Another Resource Negotiator (YARN) cluster manager [10] is con-
figured on each container cluster. Therefore, each application or user
is provided with a private and customised YARN cluster. Our approach
is significantly different from a standard YARN deployment, where a
single YARN cluster tries to satisfy the needs of all the applications
and users. To provide serverless capabilities to the container clusters
and thus offer serverless YARN environments, our platform relies on
a framework capable of continually accounting for and scaling the
resources of each container, thus efficiently adjusting the allocated
resources according to the actual usage, while minimising the impact
on performance. Finally, the platform also provides a web interface
that allows launching workloads and easily managing the platform. The
main contributions of this paper to the state of the art are the following:

» Up to our knowledge, this is the first platform that allows to
deploy serverless container clusters based on YARN and focused
on running Big Data workloads.

» An automated deployment system for the platform itself and the
serverless clusters and applications through IaC-based technolo-
gies, as well as a web interface to ease the platform management.

» An experimental evaluation using different Big Data applications
to prove the benefits of the serverless YARN clusters provided by
our platform when compared to simply deploying YARN without
any serverless capabilities.

The rest of the paper is organised as follows. Section 2 introduces
the technologies relevant to this paper. Related work is discussed in
Section 3. Section 4 presents the overall functionalities of the platform,
while Section 5 details its implementation. The experimental results
are presented in Section 6, comparing them with a standard YARN
deployment. Finally, Section 7 concludes the paper.

2. Background

This section introduces the main concepts relevant to this work,
such as container-based virtualisation in Section 2.1 and an overview of
serverless computing in Section 2.2. Section 2.3 presents the IaC tools
upon which the platform deployment is built, and finally Section 2.4
exposes the Big Data technologies that are relevant to this paper.

2.1. OS-level virtualisation

Among the different forms of server virtualisation, OS-level is nowa-
days the most widely extended. Basically, it consists of creating isolated
virtual environments, usually named as containers, which share the OS
kernel in which they are hosted, imposing a low overhead and making
their deployment very light. In addition, many container technologies
support cgroups [11], a Linux kernel feature that allows limiting,
accounting for, and isolating the resource usage of a collection of
processes. Considering that containers can just be treated as a group
of processes from the OS point of view, cgroups allows vertically
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- hosts: all
become: yes
- name: Install apache
package:
name:
state:

apache2

1
2
3
4
5
6 present

Listing 1: Example of a basic Ansible playbook

scaling their resources according to their actual usage, thus providing
the underlying foundation for a potential serverless-like environment.
The container engine chosen for our platform is Apptainer, formerly
known as Singularity [12]. Besides being compatible with cgroups,
Apptainer also offers certain advantages over other popular engines,
such as Docker [13]. For instance, it follows a daemonless architecture,
requiring no additional background processes, and provides rootless
support by default. These features make Apptainer a perfect candidate
for easily running containers on shared multi-user systems, such as High
Performance Computing (HPC) clusters.

2.2. Serverless computing and FaaS

The serverless paradigm is a model that enables users to run ap-
plications without needing to define the resource configuration of the
underlying servers. Although servers still exist, users are relieved of
managing them; instead, providers operate such servers and scale their
resources based on demand. There are two key concepts associated with
this paradigm:

» Pay only for what you use: this is closely related to cloud
providers when billing is applied. Users only pay for the resources
consumed while their code is running, as opposed to renting a vir-
tual machine for a period of time, where they would pay even for
idle resources. The challenge is to scale resources appropriately,
for example by releasing those that are allocated but underutilised
by a user to make them available to other users.

Elastic scalability: users can access all the necessary resources
within their limits and/or the provider’s capacity. The allocated
resources are dynamically and transparently scaled to ensure the
required capacity at any time.

This paradigm is strongly related to virtualisation, as the most com-
mon implementation approach is to have several physical servers where
multiple virtual environments are deployed. The resources of these
environments are allocated and changed dynamically, thus achieving
greater flexibility when managing them. Fargate [14] is an example
of a serverless service from the Amazon Web Services (AWS) cloud
provider [15], which allows application environments to be deployed
using a container orchestration service, either Elastic Container Service
(ECS) [16] or Elastic Kubernetes Service (EKS) [17].

Currently, FaaS is the most widespread implementation of the
serverless paradigm. In this model, users only submit the application
code to the FaaS service, which will execute it typically when triggered
by specific events or requests, making it well suited for simple tasks
or single functions commonly used to process a data stream. Other
workloads that fit well are stateless services that may need to scale
easily, such as a web server. However, this simplicity often limits
its potential use cases, especially the type of workloads that can
be executed, leaving out complex workloads such as Big Data ones.
Furthermore, some Faa$S services limit the maximum allowed runtime
and/or allocable resources. Examples of FaaS services are Amazon
Lambda [18], Azure Functions [19] and Google Cloud Functions [20].
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Fig. 1. Ansible architecture.

2.3. Infrastructure as Code

The IaC paradigm allows infrastructure resources to be defined and
managed using source code. The main idea is to develop code that
describes the infrastructure specification so that it can be provisioned
and/or managed in an automated manner. In this way, methodologies
and tools commonly used in traditional software development can
also be applied (e.g., Git), but managing infrastructure instead of
applications. The main purpose of IaC is to dynamically provide and
maintain systems that are predictable and whose configurations should
be immutable. In other words, the same environment should always
be generated from the same code, making it very easy to repeatedly
deploy such environment on different machines or to restore it if
necessary. There are currently multiple IaC tools that can be classified
under different criteria, such as their supported functionalities or their
underlying architectures.

Ansible [21] was the IaC tool chosen to automatically deploy our
platform, as well as the containers and applications that run on the
physical nodes. This tool follows an agentless architecture, so it does
not need to be installed on all the servers to be managed, but only on a
single server, called the management node, from which remote servers
are configured through SSH. Fig. 1 depicts its architecture along with
the most important concepts. The nodes to be managed can be grouped,
an interesting feature in order to apply the same configuration to an
entire group. The definition of the managed nodes and groups is done
in the inventory file. Another key concept is the playbook, which is a
YAML file that defines the actions to be performed on the nodes. Listing
1 shows a basic playbook where the Apache web server is installed
on all the nodes listed in the inventory. Note that Ansible tasks are
idempotent: if a task is executed several times, the final result remains
the same.

2.4. Big Data technologies

The vast development in many fields has significantly increased
the amount of generated data. To address this challenge, new tech-
nologies have emerged, as traditional ones struggle to process such
large datasets. It was remarkable the emergence of MapReduce [22],
a parallel paradigm characterised by dividing data processing into
two phases: Map and Reduce. These sub-processes are executed in
a distributed manner on a cluster of commodity nodes. To support
this processing, MapReduce relies on a distributed data storage and
processing model that follows a master/worker architecture. Inspired
by this model, other technologies implementing or evolving it came
to light, most notably the Apache Hadoop open-source project [6].
Hadoop integrates HDFS [23] as the storage system to distribute data in
blocks across the cluster nodes, thus providing the prior data division
needed by the Hadoop MapReduce processing engine, in addition to
replicating those blocks to ensure fault tolerance. HDFS relies on two
main services: the NameNode, a process executed on the master node
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to manage the distributed file system, and the DataNode, which is
executed on each worker node to store the data blocks on local disks.
Apache Spark [7] is another open-source framework that emerged as
an evolution of Hadoop MapReduce, designed to overcome some of its
limitations (e.g., stream processing).

When running applications using these Big Data frameworks, it is
necessary to schedule and assign the processing tasks to be executed
on the available cluster nodes, as well as to manage the resources allo-
cated to such tasks, which is the responsibility of the cluster manager.
Hadoop provides YARN [10] as a built-in manager, also compatible
with many other frameworks, including Spark. YARN is divided into
three main components:

» ResourceManager (RM), a process running on the master node
responsible for managing the cluster resources. The RM maintains
a list of active nodes and their available resources, and accepts
requests for application execution.

NodeManager (NM), which runs on each worker node and pro-
vides the resources required by the applications following the
instructions from the RM.

Application Master (AM), which is launched by each application
when its execution starts. Its main function is to negotiate the
resources with the RM and monitor the status and progress of the
application.

The scheduling of the application execution submitted to the RM
depends on the scheduler. Currently, YARN provides three different
schedulers: FIFO, Capacity and Fair. FIFO, the simplest, executes the
applications in order of arrival and does not allow concurrent ex-
ecution. So, long-running applications can potentially block shorter
ones that may only require a small portion of the resources. The
Capacity scheduler allows defining multiple queues with a percentage
of the cluster resources allocated, so that each queue is guaranteed a
minimum amount of resources and applications can run concurrently
if submitted to different queues. Applications in the same queue may
also run concurrently, depending on the queue policy. Finally, the Fair
scheduler is similar to Capacity, sharing the feature of queues and their
minimum resources, but instead of partitioning the resources statically
they are dynamically balanced among the submitted jobs. When an
application is already running and a new one is submitted, resources
will be allocated to it as soon as any of the tasks of the running
application finishes.

3. Related work

Our work is related to multiple topics, such as the FaaS and server-
less paradigms (Section 3.1), the dynamic scaling of applications (Sec-
tion 3.2), and the containerised deployment of Big Data applications
(Section 3.3). Next, each of these topics is studied, with a focus on their
most common approaches.

3.1. FaaS and serverless platforms

Currently, most of the serverless products offered by major cloud
providers are based on the FaaS paradigm. Of particular note are the
services mentioned in Section 2.2, AWS Lambda, Azure Functions and
Google Cloud Functions, which are oriented towards the transparent
execution of single functions. There are also open-source solutions,
most notably OpenWhisk [24]. These types of services focus on the
simplicity for the user to execute applications, although this indi-
rectly limits the use cases to relatively simple workloads. Inspired by
these services, a body of work is emerging that seeks to exploit their
capabilities, but overcoming such limitations and thus allowing the
execution of more complex applications and frameworks. For example,
there is a prototype [25] that combines the HyperFlow engine [26]
with AWS Lambda and Google Cloud Functions in order to execute
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scientific workflows. SWEEP [27] is another workflow-oriented system
that supports Lambda together with AWS Fargate as serverless engines.
Moreover, specifically for Big Data, there is Flint [28], a Spark-based
engine implemented with AWS Lambda, and MARLA [29], a framework
aimed at executing MapReduce jobs in Python also through Lambda.
However, despite their interesting features, they have a common dis-
advantage in comparison to our proposal, which is the set of restrictions
imposed by the underlying services on which they depend. This causes
them to be limited in terms of maximum allowed execution time or
allocable resources, or to experience some performance degradation
when implementing workarounds to overcome such limitations.

Other works focus on solving some of the intrinsic problems of
these platforms. For example, SCAR [30] combines FaaS with container
engines such as Docker, allowing to transparently launch custom con-
tainerised environments on serverless platforms. This provides greater
flexibility in the applications to be executed because they are not tied to
developing functions in the programming languages supported by the
serverless platforms. However, they are still constrained by the runtime
and resource boundaries of such platforms. Others solutions include
SOCK [31], designed for the rapid deployment of containers reducing
the overhead usually present in serverless platforms, and Fifer [32], a
framework that not only reduces such overhead but also improves the
resource usage efficiency of the cluster where containers are deployed.
Although these solutions aim to address certain performance issues of
FaaS$ platforms, they are still limited to their common use cases.

3.2. Dynamic resource scaling

There are several solutions capable of scaling applications by in-
creasing or reducing the number of virtual machine instances (horizon-
tal scaling), as well as their resources such as CPU or memory (vertical
scaling) [33]. Newer approaches focus on scaling containers, taking
advantage of their faster allocation/deallocation. For instance, there are
container orchestrators such as Docker Swarm [34], which only allows
horizontal scaling, and Kubernetes [35], a more complex platform
that also supports vertical scaling. However, Kubernetes presents some
limitations, such as conflicts occurring when both scalers are used [36],
as they may respond to the same scaling need without considering
each other, which can lead to unknown side effects. Furthermore, the
vertical scaler requires restarting a container to modify its allocated
resources, which can interrupt the execution flow of an application.
In addition, both are non-specific container orchestrators, which may
complicate the deployment and scaling of applications with particular
needs (e.g., Big Data workloads, which require dedicated disks and
communication between workers). Overall, all these limitations mean
that there is no straightforward solution to create container-based
serverless environments with these technologies as of today.

There are other solutions such as Dhalion [37], a framework capable
of automatically scaling applications running on Twitter Heron [38].
It works by monitoring the health of the workload to detect symp-
toms that could point to performance degradations, triggering as a
result the scaling up or down of applications. However, Dhalion is
limited to streaming applications built upon Heron. Another interesting
framework is RUBAS [39], capable of dynamically adjusting the allo-
cation of containers deployed on Kubernetes to match the needs of the
running application. Finally, there is also Serverless Containers [40],
which focuses on fine-grained resource scaling (e.g., CPU, memory) of
containers in real time via cgroups and, unlike Kubernetes, without
restarting them, while providing the resource accounting that charac-
terises the serverless paradigm. Both RUBAS and Serverless Containers
are designed to run standalone workloads, but have the drawback that
running a more complex execution model (such as MapReduce) makes
it very difficult to configure and set up the environment, as opposed
to our platform designed to simplify the execution of Big Data appli-
cations on top of YARN. Even so, due to its interesting vertical scaling
features, the Serverless Containers framework was used to perform the
underlying resource scaling of the serverless YARN clusters provided
by our platform.
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Fig. 2. High-level platform architecture.

3.3. Containerised deployment of Big Data applications

Regarding this topic, there are some interesting works to be men-
tioned. The system presented in [41] is able to deploy Docker contain-
ers in different clouds for Big Data analysis. Another research work [42]
proposes a MapReduce-oriented HPC system based on C++, which can
run on Docker or Singularity. The work [43] proposes a deployment
scheme for Big Data applications through Singularity containers, and
also describes the network configuration required for their communica-
tion. Despite the interesting contributions of these previous works, they
do not provide serverless capabilities to adjust the allocated resources
to the actual usage. Finally, it is worth mentioning JellyFish [44], a
performance tuning system for Hadoop YARN that implements elastic
containers where tasks are executed and can dynamically expand and
shrink according to their usage. However, it is restricted to running
Hadoop MapReduce, and it lacks support for multi-tenant environments
where concurrent application execution occurs.

4. High-level overview of the serverless platform

Our platform has been designed with the following main objectives
in mind: (1) ease of use and deployment for both users and system
administrators; (2) improvement of usage efficiency so that users only
pay for what they actually use, while freeing up resources for other
clients and allowing providers to increase their revenue; and (3) focus
on Big Data workloads through Hadoop YARN. The platform is built on
top of two fundamental components: an automated deployment system,
and a web interface for managing the platform and launching appli-
cations within container-based YARN clusters. It is worth mentioning
that, although our focus is on Big Data workloads, any application or
framework compatible with YARN can also be deployed. The platform
follows the classic master/worker architecture, as depicted in Fig. 2,
where the microservices that make up the core of the platform are
deployed on a master node, and the virtual YARN clusters run on N
worker nodes, or “hosts” from now on. The hosts and the master node
itself are managed through Ansible, so the master node acts as the
management node from the point of view of the Ansible architecture
(see Fig. 1). Therefore, the inventory file specifies the hosts to be
managed and their available computational resources in terms of CPU,
memory and disk. If the platform is deployed on a homogeneous cluster,
the inventory can be loaded automatically through a configuration file,
defining variables such as the number of cores per host.

The automated deployment of the entire platform is performed by
a set of Ansible playbooks, which are all executed through a provided
script to achieve a higher level of automation. The tasks executed in
those playbooks range from the installation of required packages and
dependencies to the startup and configuration of all the microservices
that make up the platform. In addition, the platform can be deployed
on a physical cluster infrastructure or, for testing purposes, on a virtual
cluster executed on a single physical computer. The latter is done by
relying on Vagrant [45], an IaC tool for managing virtual environments,
so that this deployment is also fully automated.

Once the platform is deployed, its main functionalities can be
accessed through the web server. Some of them include to directly
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Fig. 4. Platform deployment sequence diagram.

deploy and manage containers for testing purposes, launch virtual
YARN clusters for application execution, and modulate the underlying
vertical scaling of the containers.

5. Implementation

The details of the automated deployment system are presented in
Section 5.1. The implementation of the web interface is described
in Section 5.2, whereas the mechanisms for automatically deploy-
ing serverless YARN clusters to execute applications are discussed
in Section 5.3. Throughout this implementation section, the platform
architecture and its components are described in detail. Fig. 3 shows
a fine-grained platform diagram that zooms in on the high-level one
shown in Fig. 2.

5.1. Automated deployment

The deployment of the platform from scratch on a cluster of nodes
must meet some minimum software requirements, as shown in Fig. 4,
and have SSH connectivity enabled from the node that acts as master
to the nodes with the role of hosts. These roles and the resources of
the hosts must be configured in the Ansible inventory, as explained in
the previous section (see Fig. 2). From this state, the administrator can
deploy the platform with a single command executed on the master
node. This process consists of three main phases, as shown in Fig. 4,
each phase corresponding to an Ansible playbook. These playbooks
are in turn divided into several files that group together related tasks.
This approach improves code modularity and allows tasks to be reused
across multiple playbooks. It is worth noting that due to the idempo-
tency of Ansible, as stated in Section 2.3, only the necessary tasks are
carried out.

More specifically, the first phase installs all the software and depen-
dencies of the platform with the install playbook.yml file. It is important
to note the installation of BDWatchdog [46], a monitoring framework
that provides detailed information about the resource usage of contain-
ers. As a requirement for BDWatchdog, both an HBase [47] database
and an OpenTSDB [48] service must be deployed, the latter being
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Fig. 5. Example of IP address assignment to containers.

a time series management service that uses HBase as the underlying
storage. The resource monitoring tool of BDWatchdog runs within the
containers and collects usage metrics that are sent to OpenTSDB for
their subsequent management by the Serverless Containers framework
(see Fig. 3). Moreover, this first playbook configures the network
connections between containers. For this purpose, our platform re-
lies on the Container Network Interface (CNI) [49] that consists of a
specification and libraries for writing plugins to configure container
networking, along with different supported network plugins. In our
platform, a range of IP addresses is assigned to each host, where all
ranges are under the same subnet with no address overlap, so that
all containers across the hosts are reachable within the same network.
Fig. 5 shows an example of address assignment to containers using four
hosts. To implement such networking, our platform allows selecting a
network plugin, currently supporting different options such as bridge,
macvlan or ipvlan.
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The second phase of the deployment prepares all the requirements
needed for the proper execution of the containers, carried out by
start containers playbook.yml. Regarding the containers themselves, a
key Ansible task consists of creating a base image using a Singularity
definition file that holds the required software for BDWatchdog’s mon-
itoring (see container bubble in Fig. 3). This base image is customised
later before cluster startup (i.e., “offline”) depending on the Big Data
framework to be deployed. Therefore, users simply choose the required
framework for their applications (e.g., Hadoop, Spark) and the corre-
sponding YARN clusters are built using an image with the requested
framework installed. Regarding the hosts, the Scaler service responsible
for scaling the container resources is deployed on them. Once both
the container image and hosts are prepared, this playbook starts the
containers requested by the users, either in this phase just for testing,
or later through a request via the web interface. A final task consists of
binding one directory of each container to one of the physical disks
available on the host in order to distribute disks among containers,
trying to minimise disk contention.

The third phase (launch_playbook.yml) is responsible for launching
all the microservices that make up the platform on the master node
(e.g., Redis), including the web server for its management. Moreover,
this playbook launches the BDWatchdog and Serverless Containers
frameworks, including a CouchDB database [50] that stores all the
information about hosts and containers, as well as the Serverless Con-
tainers’ microservices and their scaling configuration. This information
is displayed in the web interface and is constantly accessed and up-
dated, as it is critical to later provide the serverless capabilities and
modulate their behaviour. Additionally, the “Rebooter” service is re-
sponsible for monitoring the rest of the microservices and detecting
those that are unresponsive or malfunctioning, in order to restart them
if necessary. Fig. 3 shows all these components and their interactions
within the platform architecture.

Finally, another key piece is the configuration file (config.yml, see
Fig. 4), partially shown in Listing 2. Most options are self-explanatory
or include a brief description, but some clarification may be necessary.
The “hosts” configuration parameters (lines 2-8) refer to the worker
nodes on which containers are executed. These parameters are used to
automatically generate the Ansible inventory when deploying the plat-
form on homogeneous clusters. Thus, it is possible to set the number of
hosts, their CPU cores, memory and disks, even distinguishing between
SSD and HDD disks. The “containers” configuration parameters (lines
11-15) can be used to start some test containers during the platform
deployment.

5.2. Web interface

The interface was implemented using the Django web frame-
work [51]. When opening any page, the required information is re-
trieved from the CouchDB database at runtime, and then displayed
to the user. This visualisation is done through HTML templates using
variables whose values are specified with such retrieved data. Most of
these items are provided through drop-down boxes, which allows the
user to select the amount of information to be displayed at any time.
To process user requests such as launching a new YARN cluster, a web
form with the corresponding fields is displayed (see Fig. 6).

When it comes to these requests, some of them are very simple and
only require interaction with the database, but others also need inter-
action with the underlying Ansible deployment system, such as when
starting the containers for an application or provisioning a new host.
Considering that such requests can take longer than just a few seconds,
a task queuing system has been used to enable their asynchronous
execution, thus avoiding blocking the interface. To implement such
queuing system, Celery [52] was chosen, mainly because of its easy
integration with Django. Additionally, Redis [53] is used as a broker
to manage the requests and control their status (pending, finished or
failed), after having been launched and had their execution handed
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## Hosts
number_of_hosts: 4
cpus_per_host: 8
memory_per_host: 32768

hdd_disks_per_host: 1
hdd_disks_path_list:
ssd_disks_per_host: 1
ssd_disks_path_list:

/scratch/hdd
/scratch/ssd

## Containers initial values
number_of_containers_per_host: 2
max_cpu_percentage_per_container:
min_cpu_percentage_per_container:
max_memory_per_container: 8192
min_memory_per_container: 512

—
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## Container network configuration

# interface for inter-host
communication

iface: ethl

# modes: bridge,

mode: ipvlan

subnet: 10.22.0.0/16

Ju—
[e)

19
20
21
22

ptp, macvlan, ipvlan

Listing 2: Excerpt of the platform configuration file (config.yml)

Start app

App*
‘terason ‘

Number of instances*
g |
Allocation policy

~

| Cyclic
Scaling benevolence*
| Strict

Start App

Fig. 6. Example of a web form to launch a YARN cluster.
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over to Celery. The web interface displays the pending requests, and
when they are finished, it shows whether they were successfully com-
pleted or not. In the case of running applications, the user can also view
the execution time as soon as they are finished. The web server together
with its related services (i.e., Redis and Celery) are shown in Fig. 3.

5.3. Serverless YARN clusters for Big Data workloads

Our platform enables the user to deploy a serverless container clus-
ter to run YARN applications. Typically, these applications are Big Data
workloads, but any application running on top of YARN may actually
be executed. The deployment of a YARN cluster is initiated through
the web interface, where the first step is to define the application
(or applications) to execute on such cluster. This definition includes
information such as the application(s) startup script, the required Big
Data framework, and the maximum and minimum resources (CPU and
memory) in order to set the upper and lower limits that the cluster will
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have later on. Frameworks currently offered include Hadoop MapRe-
duce and Spark, although adding more YARN-compatible frameworks
like Flink is straightforward. The first time an application is defined, a
Singularity image is automatically built from the base container image,
which was generated during the platform deployment as explained
earlier (see Section 5.1). This new image is bundled with a full Hadoop
distribution including YARN and HDFS. This image, in turn, may be
used as a new base image to create another bundled with Spark or,
in the future, with other YARN-compatible frameworks. Once the final
container image is built, it is automatically distributed to the available
hosts through Ansible so that they can run the corresponding containers
when requested. After this step, a YARN cluster to execute the appli-
cation can be launched by just clicking a single button that displays a
web form like the one shown in Fig. 6. The first two fields specify the
application name and the number of instances, which in turn sets the
number of containers to be deployed as workers for the newly created
YARN cluster. Therefore, each worker runs the YARN NodeManager
process together with the corresponding DataNode to provide support
for HDFS within the YARN cluster. A small portion of the resources
defined for the application are used to create an additional container
that will act as the master container within the YARN cluster, running
the less intensive ResourceManager and NameNode processes for YARN
and HDFS, respectively. The remaining resources are distributed evenly
among the worker containers. It is worth mentioning that this is a
temporary cluster that will be deleted once the application(s) are
finished. This means that the HDFS data will be removed, so it is
necessary to upload the input data after cluster startup, and retrieve
any results to be preserved before cluster deletion.

5.3.1. Allocation policies

The allocation of the container instances of a YARN cluster on the
available platform hosts can be controlled by three different policies:
fill-up, cyclic and best-effort (see the third field of the form in Fig. 6).
Note that these policies manage the allocation of newly created con-
tainers, as live migration of containers between hosts is not currently
supported. The fill-up policy tries to allocate all the containers on
the first host with enough free resources available. As soon as such
host runs out of capacity, it moves to the next one and retries to
allocate the remaining containers. This operation is repeated until no
containers are pending. The cyclic policy seeks to allocate containers
in a distributed manner, so that each time it allocates a container on a
certain host, it moves to the next one even if that first host still has
enough resources. After allocating a container on the last host, this
policy returns to the first one to continue the distribution. Finally, the
best-effort policy is similar to cyclic, but instead of going through the
hosts in numerical order, it goes from lowest to highest disk contention,
seeking to occupy the hosts with unallocated disks first. This policy
allows for less contention on each disk, which improves performance
for I/0-intensive applications such as many Big Data workloads.

To illustrate these policies, a simplified example is shown in Fig. 7.
The base scenario is presented in Fig. 7(a), where there are four hosts,
each with two disks and eight cores (i.e., maximum capacity of 800
CPU shares). In this base scenario, two initial containers are already
deployed on the infrastructure, consuming 400 shares and both disks on
the first host. If a YARN cluster is launched with six worker containers
(and one master container) and 1300 CPU shares, the result would
be the allocation of 200 shares for each worker container and 100
shares for the master. Considering the three policies, three scenarios
are possible. Fig. 7(b) shows the result of applying the fill-up policy,
where the first two hosts are currently at full CPU capacity, and their
two disks are used by two containers each. The third host has only
one container deployed with 100 shares allocated and using one disk,
while the last host is completely idle. Fig. 7(c) shows the result of
the cyclic policy. The first host is in the same situation as before
(i.e., fully used), while the second and third hosts have 400 and 300
shares consumed, respectively, and their two disks are used by only
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one container each. The difference in the number of consumed shares
is because the master container has a different resource allocation (100
shares less). In this scenario, the last host has one container deployed
that consumes 200 shares and one disk. Finally, Fig. 7(d) shows the
best-effort scenario. All the worker containers have been distributed
along the second, third and fourth hosts, since the disks of the first host
were already assigned to the two initial containers (coloured red). The
last container (master) is then assigned to the first host as a direct result
of the cyclical distribution. Therefore, the first host has a total of 500
shares consumed, one disk used by two containers and the other by only
one, while the remaining hosts have 400 shares consumed and each
disk used by only one container. Note that the disks may be marked
as unavailable for new containers until older containers finish, if their
contention is too high, in order to minimise I/O bottlenecks. Master
containers are excluded from this process since they are not considered
to be I/0 intensive. As discussed in Section 5.1 and shown in Listing 2,
the platform distinguishes between SSD and HDD disks. Therefore, SSD
disks are prioritised when new containers are allocated and also allow
a higher ratio of assigned containers per disk.

5.3.2. Serverless capabilities

Up to this point, the mechanisms to deploy virtual YARN clusters
and their resources have been explained, but it is still necessary to
describe how to provide serverless capabilities to each cluster. This is
done through the BDWatchdog and Serverless Containers frameworks,
which work in conjunction. As can be seen in Fig. 3, BDWatchdog
reports resource usage metrics for each container and stores them in
OpenTSDB. BDWatchdog is of great interest for this purpose because
monitoring container consumption is not a trivial task and system-wide
monitoring tools do not usually support it, as they do not provide
the process-based monitoring plus the time series aggregation that
BDWatchdog does. Serverless Containers is responsible for performing
the actual resource scaling on each container. To do so, it assigns, on
the one hand, maximum and minimum resource limits when creating
each container, based on the limits defined for the application. On the
other hand, it also assigns upper and lower thresholds to each container
resource, which will be below the amount actually allocated. Serverless
Containers constantly reads the usage metrics reported by BDWatchdog
and compares them with the associated thresholds. If the consumption
of a specific resource falls below the lower threshold, an underutilisa-
tion scenario is considered (i.e., usage is far from the allocated amount),
so it will try to decrease its allocated resources and thus free them for
other containers provided that its minimum allocation is maintained.
If the consumption exceeds its upper threshold, a bottleneck scenario
is considered (i.e., it is close to the allocated amount), so it will try
to increase such allocation as long as it is possible considering its
maximum limit and the available resources of the underlying host.
Both thresholds are recalculated when a scaling operation occurs. These
scaling operations are carried out by modifying the amount of usable
resources for each container via cgroups on each host, since containers
are groups of processes for the operating system. This is done “on-the
fly”, that is, without restarting any container or running application.

Once a new YARN cluster is deployed, the scaling applied to it
can be modulated. The last field of the form shown in Fig. 6 refers
to how benevolent the scaling of the container resources should be,
with three possible values: “lax”, “strict” and “medium”. This option
involves changing the upper and lower thresholds of Serverless Con-
tainers mentioned earlier, tuning the gap between the thresholds and
thus how narrow is the band of what is considered regular usage. With
lax, the minimum capacity that the containers have at any time is very
permissive, staying around half of the maximum capacity, and also
issuing scaling up operations with enough time margin to avoid actually
reaching a bottleneck, or at least shorten its duration. Strict intends to
ensure that the allocated resources are as close as possible to the actual
ones, only scaling up when usage is very close to a bottleneck, or scaling
down as soon as some underutilisation is detected. Finally, medium is
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Fig. 7. Illustration of the different container allocation policies.

an intermediate point between the two previous settings. The idea is
to modulate the serverless capabilities of the platform according to the
user’s needs, either prioritising the speed of scaling up operations with a
lax policy at the potential cost of allocating more resources, or improve
resource efficiency with a stricter policy.

5.3.3. YARN cluster and application startup

Once the form in Fig. 6 has been filled in to define the parameters
of the YARN cluster on which the application(s) will be executed, and
also to configure its serverless behaviour, the request to launch them
can finally be submitted. This request is sent to the Celery queuing
system, which in turn automatically creates the cluster according to the
previously defined configuration and runs the application(s) through
Ansible. Two playbooks are used for this purpose: (1) the containers
are first deployed by start containers_playbook.yml, as already discussed
in Section 5.1; and (2) a new playbook is then required to further
configure such containers in order to enable them to operate as a YARN
cluster. To do so, this playbook gets the IP addresses of the deployed
containers and properly configures the name resolution between them.
Then, the HDFS and YARN configuration files, as well as those of
Hadoop or Spark depending on the framework, are copied to each
container. Note that these files are tailored for each YARN cluster. For
example, taking into account the maximum allocable resources, the
resources available to YARN for task allocation are properly defined.
After this, the passwordless SSH connection from the master container
of the YARN cluster to the workers is set up for ease of management.
Finally, both HDFS and YARN services are started, all files associated
with the application(s) to run are copied to the master container (e.g., a
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startup script), and the execution starts. Upon completion, the YARN
cluster is deleted, and the runtime is displayed if the execution was
successful, otherwise the corresponding error is shown. The results gen-
erated by the application(s) can be stored in a user-defined directory,
which remains accessible after the cluster has been deleted.

6. Performance evaluation

The main goal of the experimental evaluation is to compare the
performance of our platform when executing Big Data workloads sepa-
rately, each on its own serverless YARN cluster, as opposed to running
them on a standard YARN cluster. Note that with “standard YARN”
we refer to the direct deployment of vanilla YARN over the same
physical infrastructure, thus without serverless capabilities. For com-
parison, both execution time and resource efficiency are evaluated. In
terms of runtime, the platform is expected to be faster when executing
multiple serverless clusters concurrently, each running a Big Data work-
load, as it can dynamically reallocate underutilised resources between
them. However, the potential overhead caused by the scaling can
have a negative impact and must be carefully considered. Regarding
resource efficiency, the serverless platform should be more efficient by
continually adjusting the allocated resources to their actual usage.

The experimental configuration is presented in Section 6.1, includ-
ing the environment used for deployment and the executed workloads,
while Sections 6.2, 6.3 and 6.4 describe the experiments and analyse
their results. Finally, Section 6.5 studies some overheads that can arise
when using the platform.
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Fig. 8. CPU usage of TeraSort executed by standard YARN (without concurrency).

Table 1
Hardware and software specifications of the physical cluster nodes.
Hardware
CPU Model 2 X Intel Xeon Silver 4216
#Cores per node 32
Memory 256 GiB DDR4 2933 MHz
Disk 1 x SSD 240 GiB SATA3
Network Gigabit Ethernet (1 Gbps)
Software
OS/Kernel CentOS Linux 7.9.2009/5.4.233
Java OpenJDK 1.8.0_322
Apptainer 1.1.6
Container OS Ubuntu 20.04
Version 3.4.0
Spark Executors per node 16
P Executor heap size 13 GiB
Executor cores 2
Hadoop Version 3.35
Block size 128 MiB
HDF!
s Replication factor 2

6.1. Experimental configuration

The experiments have been carried out on a homogeneous physical
cluster. Each node has two Intel Xeon CPUs with 16 cores each (i.e., 32
cores per node), 256 GiB of memory, one local SSD disk and a Gigabit
Ethernet network (see Table 1). Our serverless platform and standard
YARN were both deployed, one at a time, on this same infrastructure.

Table 1 also presents the software configuration, with details such
as the OS and kernel of the cluster nodes. The versions of the Java
runtime, Hadoop and Spark used for the experiments are also shown, as
well as some relevant configuration parameters used for these Big Data
frameworks, such as the number of cores for Spark executors or the
HDFS block size. The container engine for the serverless YARN clusters
was Apptainer 1.1.6 and the containers use Ubuntu 20.04 for the OS
template.

On the one hand, the standard YARN cluster has been deployed us-
ing five nodes, one for Hadoop master services and four as workers. On
the other hand, the serverless platform has been deployed on six nodes,
one for the platform master itself, while the others act as hosts to deploy
the serverless YARN clusters. One of the hosts is used for containers
that run master services, and four for containers that deploy workers.
Therefore, there are 128 physical cores available for processing tasks,
256 logical cores due to Intel’s HyperThreading technology (i.e., 25,600
CPU shares), and 1 TiB of memory. Although master containers could
also be deployed on the same host as worker containers, we avoid this
scenario in order to have a more similar experimental environment
compared to standard YARN. Following this idea, each serverless YARN
cluster requests four worker containers assigned cyclically in order to
have one worker per host, in the same way as standard YARN. It should
also be mentioned that a strict scaling benevolence level was used with
the serverless platform.

Regarding the Big Data workloads evaluated in the experiments,
two popular and widely used benchmarks were chosen: TeraSort and
PageRank. They were executed using Spark and Hadoop MapReduce,
respectively. These workloads were selected because of their different
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CPU usage patterns, the resource on which the experiments are focused.
On the one hand, TeraSort sorts 100-byte key-value tuples, where there
is usually a first phase of high CPU consumption and a second phase
in which it decreases significantly. On the other hand, PageRank is
an iterative graph algorithm which ranks elements by counting the
number and quality of the links to each one. Each iteration runs two
MapReduce jobs, with each job having a high CPU usage peak. In order
to keep runtimes within reasonable limits, an appropriate problem size
was previously explored, eventually choosing 130 GiB of input data for
TeraSort and 20 million pages with two iterations for PageRank.

The experiments in Sections 6.2, 6.3 and 6.4 have been divided
according to both the degree of concurrency of the workloads exe-
cuted and the amount of resources they can potentially use from the
YARN clusters and the infrastructure overall. The results obtained are
analysed mainly in terms of runtime and CPU usage efficiency. More
specifically, for the runtime it is analysed both the relative time of each
workload (i.e., the time perceived by the user until it finishes), and the
total time (i.e., the time from the start of the first workload to the end
of the second). The CPU usage efficiency is measured by calculating
the ratio between used and allocated resources. The experiments in
Section 6.5, however, are focused on measuring the YARN clusters
startup time, their memory footprint and the impact produced by
concurrent disk sharing.

6.2. Experiments without concurrency

The first group of experiments consists of executing both Big Data
workloads in sequence and without overlap, using all available re-
sources of the underlying infrastructure. For comparison purposes, the
experiments are executed on standard YARN and using two server-
less YARN clusters on our platform. This testbed represents a non-
contention scenario to analyse the results of each workload separately.

Figs. 8 and 9 show the CPU usage plots of TeraSort and PageRank,
respectively, when executed by standard YARN. Regarding their usage
patterns, TeraSort shows high consumption for a long time, reaching
up to 25,000 CPU shares, until it drops significantly at a certain point
around second 380. PageRank presents lower overall CPU usage with
four peaks exceeding 15,000 shares, which correspond to the two
MapReduce jobs from each of the two iterations performed by this
workload. Figs. 10 and 11 show the analogous plots for the serverless
YARN clusters executed on our platform, where the orange line repre-
sents the amount of CPU allocated to each cluster over time, and the
blue line is the actual CPU usage by the workloads. It can be observed
that the usage patterns are similar to the previous ones obtained with
standard YARN, but slightly “deformed”, which is a direct consequence
of the underlying transient bottlenecks and resource scaling operations
performed by the serverless platform. Note that the CPU usage shown
is automatically calculated by the platform as the sum of the usage of
each container within the serverless cluster.

Table 2 shows the runtime and efficiency results for each scenario
and workload. In terms of runtime, the serverless platform introduces
a negligible overhead (<3%) due to the scaling, which can cause short
bottlenecks when scaling upwards. More specifically, it can be observed
that both TeraSort and PageRank just take a few seconds longer, slightly
increasing their runtimes by only 1% and 3%, respectively. The lower
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Fig. 11. CPU usage of PageRank executed by the serverless platform (without concurrency).

Table 2

Runtimes and resource efficiency of standard YARN and the serverless platform (without concurrency).

Scenario Workload Runtime (s) Allocation integral Usage integral CPU usage ratio
(core-s) (core-s) (%)
TeraSort 583 149,248 62,415 42
Standard YARN PageRank 662 169,472 27,989 17
Total 1245 318,720 90,404 28
TeraSort 589 (+1%) 79,377 39,333 50 (+19%)
Serverless YARN PageRank 679 (+3%) 111,714 24,851 22 (+29%)
Total 1268 (+2%) 191,091 64,184 34 (+21%)

variation of TeraSort is probably because it suffers less from platform
overhead due to a fairly stable CPU usage. In any case, the goal of the
platform is not to reduce runtimes for single workloads, so it is very
positive that it barely introduces any overhead.

In terms of resource efficiency, it should be explained how the
results were calculated (fourth and fifth columns in Table 2). To begin
with, two areas are defined in each experiment: the area under the
allocated resources and the area under the consumed resources. The
first one refers to either all resources available for standard YARN (no
line shown in the plots), or to the resources allocated to each serverless
YARN cluster at any given time (i.e., the area under the orange lines).
The second area is self-explanatory, corresponding to the areas under
the blue lines for the plots with standard YARN and the serverless YARN
clusters. Their integrals are calculated to obtain the numerical value of
the corresponding areas measured in “CPU core-seconds” (abbreviated
as “core-s” in the table). Finally, the CPU usage ratio (last column) is
the quotient between the resources consumed and those allocated.

The efficiency results in Table 2 show that standard YARN obtains
usage ratios of 42% and 17% for TeraSort and PageRank, respectively,
and 28% for the whole execution. PageRank obtains a significantly
lower result compared to TeraSort, because it presents only brief high
CPU peaks. On the other hand, our platform increases the usage ratios
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by 19% and 29% for TeraSort and PageRank, respectively, and 21% for
the whole execution. The better the scaling is performed, the better the
ratio obtained, since the resources allocated are closer to those actually
used. It is interesting to note the difference in resource efficiency
between both workloads when executed on the serverless platform. As
mentioned above in the runtime analysis, TeraSort has a more stable
consumption, thus being easier to scale by the platform, whereas the
CPU peaks of PageRank become much more difficult to manage, as the
platform tends to overestimate and keep allocated resources that are
no longer used just a few seconds later.

6.3. Experiments with concurrency at 100% oversubscription

The second group of experiments executes both workloads simul-
taneously, each trying again to use all available resources. These ex-
periments aim to create a contention scenario with 100% resource
oversubscription. This means that, even though the physical resources
remain the same as before, both standard YARN and the platform
advertise twice as many resources to the workloads (i.e., they are
deployed with potentially full resources). Considering this concurrency,
standard YARN is configured using the Fair scheduler with a single
queue in order to execute both workloads trying to maximise resource
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Fig. 12. CPU usage of both workloads at 100% oversubscription executed concurrently by standard YARN (1-minute delay).
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Fig. 14. CPU usage of both workloads at 100% oversubscription executed concurrently by the serverless platform with low contention (7-minute delay).

efficiency (see Section 2.4). The workloads are submitted to the YARN
scheduler with a one-minute delay between them. Regarding the plat-
form, two serverless YARN clusters will now coexist, with the same
resource configuration as in Section 6.2, that is, each serverless cluster
requesting one master and four worker containers, all distributed across
the available hosts, and with each worker potentially using all host
resources. This is done to accommodate each workload in isolation and,
similar to the standard YARN scenario, trying to improve resource effi-
ciency. However, this in turn means that two containers from different
serverless YARN clusters will now coexist on each host. As mentioned
in Section 6.1, master containers do not coexist with workers in order
to create an environment more similar to standard YARN. Taking into
account the two serverless YARN clusters and the concurrent execution,
two scenarios are analysed for our platform: (1) a high-contention
scenario where there is a one-minute delay between the execution of
both workloads (the same delay as with standard YARN), causing an
overlap that lasts for a long time; and (2) a low-contention scenario,
where the delay is around seven minutes, resulting in a short overlap.
It is expected that the 100% oversubscription may lead to differences
depending on the contention, considering that in the high-contention
scenario resources will shift between both serverless clusters but will
eventually be exhausted, whereas in the low-contention case resources
will be able to move from one cluster to another according to demand.

Fig. 12 shows the CPU usage when executing both workloads
concurrently with standard YARN, launching TeraSort first and then
PageRank with a one-minute delay. In this scenario, it is expected
that TeraSort will request all available resources, forcing PageRank to
wait until TeraSort finishes. In this case, the YARN scheduler is simply
unable to do anything. This can be observed in the figure, since the
representative CPU usage peaks of PageRank are not appreciated until
the label “[A]”, which also signals the end of the TeraSort execution
at around second 615. This is the main issue of standard YARN,
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even with the Fair scheduler, as it does not balance the available
resources directly. Instead, it balances the processing tasks that have
the resources allocated, regardless of whether they use them or not (see
Section 2.4). This means that if an application requests all resources,
several tasks will be created with those allocated resources, but YARN is
unable to redistribute them when they are underutilised. So, resources
are reserved for those processing tasks until they are finished.

Fig. 13 shows the results using the serverless YARN clusters on
the high-contention scenario, where the orange and red lines repre-
sent the CPU allocated by our platform to TeraSort and PageRank,
respectively, and the blue and green ones represent their actual usage.
In this case, both workloads can actually be executed concurrently as
they are deployed on different and isolated YARN clusters, which is
a major advantage over standard YARN. However, as the resources
are eventually shared transparently between both clusters, each one
can use fewer resources, as expected. Nevertheless, this overlap only
occurs during a part of the execution, as the first iteration of PageRank
takes longer than before, which causes the second iteration to run
when TeraSort has already finished. This behaviour is related to the
network, as both workloads are now using it concurrently and inten-
sively. During the first job of PageRank there is a Map and a Reduce
phase, where the latter exchanges a lot of data between workers. At
the same time, TeraSort is writing its output data to HDFS, which also
involves network activity. As a result, there is a high network load due
to the HDFS data replication. Therefore, the concurrent execution of
the workloads is mainly limited by the underlying network speed.

Fig. 14 presents the results when executing the workloads on our
platform with a delay of seven minutes (i.e., the low-contention sce-
nario explained earlier). At first glance, it can be seen that each
workload individually now takes less time than before because they do
not have to share resources intensively. However, it is important to note
a limitation of the experiments carried out with the platform, which is
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Runtimes and resource efficiency of standard YARN and the serverless platform (workloads executed concurrently at 100% oversubscription).

Scenario Workload Runtime (s) Allocation integral Usage integral CPU usage ratio
(core-s) (core-s) (%)
TeraSort 615 157,440 64,306 41
Standard YARN PageRank 1219 171,776 28,068 16
Total 1286 329,216 92,374 28
TeraSort 673 (+9%) 58,180 30,779 53 (+29%)
Serverless YARN (high contention) PageRank 922 (—24%) 112,249 26,834 24 (+50%)
Total 982 (-24%) 170,429 57,613 34 (+21%)
TeraSort 646 (+5%) 69,726 32,772 47 (+15%)
Serverless YARN (low contention) PageRank 716 (—41%) 116,376 26,077 22 (+38%)
Total 1136 (—12%) 186,103 58,849 32 (+14%)

particularly noticeable in this case: TeraSort is running alone at the
very beginning, but its maximum resources are actually limited. The
reason for this behaviour is that there is a minimum capacity already
reserved for PageRank, even though it has not been started yet. This is
because each serverless YARN cluster actually starts earlier than shown
to precisely execute each workload with the intended delay, so that a
minimum reserved capacity is maintained from that moment on. Future
work to address this limitation is to detect situations of near-zero usage
in order to reallocate resources from one serverless cluster with usage
well below the minimum to another cluster.

Table 3 shows the runtime and efficiency results for each scenario.
For standard YARN, the total runtime is similar to the previous case
without concurrency (see Table 2), considering that no concurrent
execution is actually achieved when using the Fair scheduler. Regarding
relative times, TeraSort obtains similar performance to the case without
concurrency, but PageRank increases it significantly by 84%. Even
though PageRank is submitted just one minute after TeraSort, it cannot
actually begin until TeraSort finishes, so its relative time (1219 s)
is close to the total (1286 s). For serverless YARN clusters in the
high-contention scenario, TeraSort runtime increases by only 9% when
compared to standard YARN, while both PageRank and the total time
decrease significantly by 24%. Therefore, although users may or may
not see their applications running faster (relative time), they benefit
globally from potentially faster times (total time) and, very impor-
tantly, from avoiding queue waiting times. In other words, this scenario
provides a fairer experience for all users, without prioritising some
workloads over others because of their submission order. Compared
to the serverless scenario without concurrency (see Table 2), TeraSort
and PageRank runtimes increase by 14% and 36%, respectively, but
the total time decreases by 23%. Thus, the increase in relative times
is balanced by the overall decrease. For the low-contention scenario,
the relative times obtained are lower than for the high-contention
counterpart, which makes sense given the lower resource contention,
but the downside is a higher total time. PageRank presents a significant
improvement (22%), explained by the fact that it was the workload
most affected by the network bottleneck. This experiment shows that
the platform in a low-contention scenario is able to execute both work-
loads concurrently without significantly impacting their performance
compared to their individual execution (see serverless runtimes in
Table 2), while achieving a lower overall time than standard YARN
(—12%), even with a seven-minute delay.

Regarding resource efficiency, the results for standard YARN are
very similar to the case without concurrency, as expected (see Tables 2
and 3). The high-contention scenario on the serverless platform obtains
similar, though slightly higher, usage ratios than without concurrency:
53%, 24% and 34% for TeraSort, PageRank and total, respectively.
This translates into an improvement of 29%, 50% and 21% over stan-
dard YARN. Finally, the low-contention scenario is slightly worse than
without concurrency, especially for TeraSort due to the aforementioned
minimum capacity associated with the PageRank execution. Although
this scenario obtains slightly lower efficiencies than its high-contention
counterpart, it still benefits from serverless execution, providing higher
ratios than standard YARN.
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6.4. Experiments with concurrency at 50% oversubscription

The third group of experiments again execute both workloads con-
currently, but now limiting the amount of resources each workload can
use to 75%, implying a resource oversubscription of 50%. For standard
YARN, this is done at submission time by limiting the resources that
the workloads request to the scheduler. For serverless YARN clusters,
this limit is instead applied to the maximum amount of resources
each cluster can potentially have allocated, setting it to 75% of the
underlying host resources, which also directly limits the maximum
amount that a container can use. The same high- and low-contention
scenarios are explored for the serverless platform. The goal of these
experiments is to analyse the behaviour of standard YARN and the
serverless platform in a scenario with less demanding workloads, and
therefore, less resource contention overall. This situation makes it
easier to share resources between workloads for standard YARN, which
should reduce the differences with serverless YARN to some extent.

Fig. 15 shows the CPU usage for standard YARN. In this case,
TeraSort starts and reserves 75% of the available resources, so that
PageRank is now able to use the remaining 25% while running concur-
rently. Three of the four characteristic CPU peaks in PageRank can be
clearly seen in the graph, as the CPU usage for the first peak “merges”
with the TeraSort execution. What happens is that during the first job
of PageRank, it only has a small portion of the available resources.
This situation, together with the network limitation mentioned earlier,
causes PageRank to run slowly. Upon completion of TeraSort, PageRank
can now run at full speed. Figs. 16 and 17 present the high- and low-
contention plots for our platform, respectively. The graphs show CPU
usage patterns similar to using the platform at 100% oversubscription,
with the most noticeable difference being that each workload now has
a lower limit of allocated resources. This similarity is expected since
the main bottleneck for concurrency is the network, not the CPU.

Table 4 shows the runtime and efficiency results. On the one hand,
TeraSort executed by standard YARN obtains a slightly higher time
than the previous two experiments, but is not severely affected by
concurrency. On the other hand, PageRank runtime increases by 64%
with respect to YARN without concurrency (see Table 2), but it is
reduced by 11% compared to the 100% oversubscription scenario (see
Table 3), as it no longer has to wait for TeraSort to finish in order
to start. The total time is slightly reduced by 8% compared to YARN
without concurrency. Overall, this experiment is the best for standard
YARN, but the improvement achieved is not particularly significant.
In the high-contention scenario with the platform and compared to
standard YARN, TeraSort runtime increases by 10% and both PageRank
and the total time decrease by 8%. The low-contention scenario obtains
lower relative times and higher total time than the high-contention
counterpart, as was the case in the analogous serverless scenarios
shown in Section 6.3. Particularly significant is the difference in the
reduction of the relative time of PageRank in the two contention
scenarios (8% vs. 24%), mainly due to the reduced overlap of the
workloads. The results achieved by the serverless platform in both
contention scenarios are closer to those obtained with standard YARN
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Fig. 15. CPU usage of both workloads at 50% oversubscription executed concurrently by standard YARN (1-minute delay).
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Fig. 16. CPU usage of both workloads at 50% oversubscription executed concurrently by the serverless platform with high contention (1-minute delay).
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Fig. 17. CPU usage of both workloads at 50% oversubscription executed concurrently by the serverless platform with low contention (7-minute delay).

Table 4

Runtimes and resource efficiency of standard YARN and the serverless platform (workloads executed concurrently at 50% oversubscription).

Scenario Workload Runtime (s) Allocation integral Usage integral CPU usage ratio
(core-s) (core-s) (%)
TeraSort 630 - - -
Standard YARN PageRank 1088 - - -
Total 1151 294,656 82,183 28
TeraSort 694 (+10%) 64,818 27,591 43
Serverless YARN (high contention) PageRank 1003 (—8%) 93,704 24,113 26
Total 1063 (—8%) 158,523 51,704 33 (+18%)
TeraSort 664 (+5%) 62,153 28,589 46
Serverless YARN (low contention) PageRank 831 (—24%) 94,434 22,501 24
Total 1251 (+9%) 156,588 51,090 33 (+18%)

in these experiments, as the network seems to be the main bottleneck,
rather than the CPU. The main difference is that our platform is fairer
because it does not prioritise the TeraSort workload just for being the
first to be submitted.

Regarding resource efficiency, only the total value can be provided
for standard YARN, as there is no clear distinction between the areas
of the different workloads due to the concurrent execution of TeraSort
and the first job of PageRank. The total usage ratio only reached
28%, the same value as in the case of 100% oversubscription. There-
fore, standard YARN is unable to use the resources more efficiently
despite having a part with actual concurrency. The results for the high-
contention scenario show that, compared to the previous experiments,
the serverless platform obtains the lowest efficiency for TeraSort (43%)
and the highest for PageRank (26%), with the total usage ratio being
very similar (33%) to the case of 100% oversubscription (see Table 3).
This scenario obtains an improvement of 18% over standard YARN.
The low-contention counterpart achieves similar results, with the same
improvement over standard YARN. This similar efficiency between the
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high- and low-contention scenarios reinforces the consistency of the
platform despite the significant differences in runtimes. Overall, the re-
sults obtained by our platform are still better than its counterpart with
standard YARN. Compared to the 100% oversubscription experiments,
the results of the platform are very similar, which is expected because of
the small change in the usage pattern in the end. The largest difference
is observed in the high-contention scenario, where TeraSort efficiency
decreases from 53% to 43%. This is due to the fact that the workload
is more unstable with fewer resources, showing more CPU drops and
spikes.

6.5. Platform overheads

In order to analyse the overheads associated with using the server-
less platform, additional experiments were performed to evaluate the
startup time of the YARN clusters and their memory footprint, as well
as the impact of disk sharing.
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Table 5
Serverless YARN clusters startup overhead.
Workers 1 2 4 8 16

Startup time (s) 42 43 (+2%) 48 (+14%) 55 (+31%) 71 (+69%)

6.5.1. Startup overhead

The startup time of a serverless YARN cluster was measured from
the moment the user presses the button on the web interface to start
it, until it is finally deployed and ready to run the desired applica-
tion(s). Several measurements were taken by varying the number of
worker containers to analyse how the times evolve as the cluster size
increases. Table 5 presents the results obtained, including the relative
increase based on the time of one worker. It shows relatively low times
considering that, once the cluster is deployed, Big Data workloads are
typically long-running applications. This overhead is mainly due to
the deployment process and not to the container technology, and can
therefore be further optimised in the future.

6.5.2. Memory footprint

The memory overhead caused by the concurrent execution of two
applications on different YARN clusters is now analysed, since each
cluster deployed on the platform requires its own YARN/HDFS pro-
cesses (see Section 2.4). To do so, two TeraSort workloads processing
80 GiB of data were run concurrently using both standard YARN and
the serverless platform. The deployment was done as described in
Section 6.1, using four workers for standard YARN and four worker
containers for each of the two corresponding serverless YARN clusters.
Additionally, the HDFS replication factor was set to 1 to reduce network
contention and focus on memory consumption. Regarding concurrency,
a 100% oversubscription and a one-minute delay between workloads
was used.

Table 6 shows the average and aggregate memory consumption
over time of YARN and HDFS processes in both scenarios. As can be
seen, the average values obtained in our platform are higher, with
a maximum increase of 69% over standard YARN, which is reason-
able since twice as many processes can be running simultaneously.
However, this difference is significantly reduced in terms of aggregate
consumption, reaching up to 40%. In other words, although the number
of YARN and HDFS services started is proportional to the number
of serverless clusters deployed, memory usage does not necessarily
scale linearly because it depends on the concurrency of the executions.
There will be periods of higher memory consumption when there are
clusters deployed simultaneously, and periods of lower consumption
since clusters will be deleted as they finish (i.e., their services are
stopped). This is noticeable in the average usage, as it does not reach
twice the consumption despite running twice the number of processes.
This is even more significant in the aggregate usage, reinforced by the
fact that concurrency is fully exploited with our platform by decreasing
runtimes, which also reduces the time that YARN/HDEFS services are
active. This even leads to an overhead as low as 15% in one experiment.
Nevertheless, these processes do not consume excessive memory on
average, as shown in Table 6, where master and worker services do not
reach 1 and 3 GiB, respectively, on standard YARN. So, it is feasible to
run multiple clusters concurrently without noticing a severe impact.

6.5.3. Impact of disk sharing

The last set of experiments analyses the impact of disk sharing on
the execution of concurrent I/0-intensive workloads using the server-
less platform. To do so, two concurrent TeraSort were executed in
a high-contention scenario (one-minute delay) at 100% oversubscrip-
tion to compare their corresponding runtimes with the execution of
a single TeraSort. Additionally, the total time was compared to the
non-concurrent execution of two TeraSort. These experiments were
performed by varying the data size, processing 80 and 160 GiB of input
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data, and using an HDFS replication factor of 1 to reduce network
contention and focus on disk load.

Table 7 shows the results obtained. As can be seen, the concurrent
execution increases the relative time of both workloads compared to a
single execution, which is expected since they have to share resources,
especially disk. It is also noticeable how it affects the second TeraSort to
a greater extent, increasing its runtime by 80% and 57% for 80 and 160
GiB, respectively. Nevertheless, neither workload has to wait for the
other, which would result in a runtime increase of 100%, twice that of
a single TeraSort. Regarding the whole execution, the total time when
processing 80 GiB concurrently (490 s) is only slightly higher (3%) than
the non-concurrent execution of both TeraSort. Therefore, disk sharing
had a negative impact, but barely noticeable. For 160 GiB, however, the
total time is reduced by 15%, so disk sharing leads to an improvement.
So, on the one hand, disk contention increases the relative time of each
workload, as expected, although overall it is still fairer to them than
a non-concurrent execution. On the other hand, disk sharing may not
have that much of an impact on total time, and it can even lead to
benefits in some cases. Anyway, I/O efficiency is a crucial aspect to
consider with Big Data. Note that in these experiments, there was only
one disk available on each physical node (see Table 1), but if there
were more, the platform could distribute the available disks among the
containers as explained in Section 5.3.1, which should further reduce
the impact of disk sharing.

7. Conclusions

Serverless computing is a very interesting paradigm today for the
execution of applications in a simple and profitable way, both from
a monetary point of view for the user and from a resource efficiency
point of view for the infrastructure provider. Within serverless, FaaS is
the most widely extended approach, allowing the execution of simple
functions directly, without the need to specify any type of configuration
for the underlying server on which they are executed. However, FaaS
has not been designed to run more complex applications that may have
an intricate interaction between many different components.

In this paper, we have presented a platform that is capable of de-
ploying serverless YARN clusters oriented to the execution of Big Data
workloads. These clusters are made up of containers whose resources
are dynamically scaled in real time according to their actual usage.
When an application is submitted, the platform automatically deploys
a new YARN cluster with serverless capabilities, placing its contain-
ers on the underlying hardware infrastructure according to different
supported policies, so that multiple YARN clusters can coexist at the
same time. In addition, the deployment of both the platform and the
container clusters is automated through IaC tools, with a web interface
that eases the management of the platform and allows it to be used
by a wider range of users. By relying on the popular YARN cluster
manager for the serverless clusters, the platform can be easily extended
to support multiple Big Data processing frameworks, currently allowing
to execute both Hadoop MapReduce and Spark workloads.

A comprehensive experimental evaluation has been carried out
using Big Data workloads and analysing several scenarios to compare
the runtime and resource usage efficiency of our platform with a
standard YARN deployment. These results have revealed the following:
(1) the overhead caused by the scaling performed by the platform is
not significant (<3%); (2) the platform obtains better results in the
concurrent execution of workloads than standard YARN, providing up
to a 24% reduction in total time and a 50% improvement in total CPU
usage ratio; and (3) workloads with bursty usage peaks become much
more difficult to manage than more stable loads. The overhead caused
in other aspects has also been evaluated, such as the startup time of
serverless YARN clusters or their memory footprint. The source code of
the platform presented in this paper is available at https://github.com/
UDC-GAC/ServerlessYARN.
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Table 6

Memory usage of YARN/HDFS processes of standard YARN and the serverless platform (workloads executed concurrently at 100% oversubscription).
Scenario Total time NameNode ResourceManager DataNode NodeManager

© Avg usage Agg usage Avg usage Agg usage Avg usage Agg usage Avg usage Agg usage
(GiB) (GiB-s) (GiB) (GiB-s) (GiB) (GiB-s) (GiB) (GiB-s)

Standard YARN 587 0.52 305.13 0.55 324.58 2.26 1,320.65 2.43 1,419.44
Serverless YARN 487 0.88 428.18 0.88 428.75 3.51 1,707.91 3.36 1,632.82
(high contention) (—17%) (+69%) (+40%) (+60%) (+32%) (+55%) (+29%) (+38%) (+15%)

Table 7

Disk overhead of the serverless platform with high contention (1-minute delay and workloads executed concurrently at 100% oversubscription).

Data size Non-concurrent execution (s) Concurrent execution (s)

Each single workload Total First workload Second workload Total
80 GiB 237 474 309 (+30%) 427 (+80%) 490 (+3%)
160 GiB 436 872 542 (+24%) 686 (+57%) 739 (-15%)

Future work includes adapting the platform to other container
engines (e.g., Docker) and extending it to other YARN-compatible Big
Data frameworks (e.g., Apache Flink). Another interesting line would
be to support horizontal scaling to increase or decrease the number of
container instances within the serverless clusters at runtime.
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