
Clupiter: a Raspberry Pi mini-supercomputer for
educational purposes

Alonso Rodrı́guez-Iglesias
Computer Architecture Group

CITIC, Universidade da Coruña
A Coruña, Spain

alonso.rodriguez@udc.es

Marı́a J. Martı́n
Computer Architecture Group

CITIC, Universidade da Coruña
A Coruña, Spain

maria.martin.santamaria@udc.es

Juan Touriño
Computer Architecture Group

CITIC, Universidade da Coruña
A Coruña, Spain

juan@udc.es

Abstract—The main objective of this work is to bring su-
percomputing and parallel processing closer to non-specialized
audiences by building a Raspberry Pi cluster, called Clupiter,
which emulates the operation of a supercomputer. It consists of
eight Raspberry Pi devices interconnected to each other so that
they can run jobs in parallel. To make it easier to show how it
works, a web application has been developed. It allows launching
parallel applications and accessing a monitoring system to see
the resource usage when these applications are running. The
NAS Parallel Benchmarks (NPB) are used as demonstration
applications. From this web application a couple of educational
videos can also be accessed. They deal, in a very informative way,
with the concepts of supercomputing and parallel programming.

Index Terms—Supercomputer, Parallel Programming, MPI,
Raspberry Pi, NAS Parallel Benchmarks (NPB)

I. INTRODUCTION

Supercomputers are computers comprised of hundreds or
thousands of processors, along with massive amounts of mem-
ory, to provide high speed, computational and data processing
power. However, these machines and their mechanisms and
processes are often beyond the understanding of the general
public. For this reason, the aim of this work is to bring this
field of computer science closer to people who are not familiar
with it.

For this purpose, a small cluster has been built with Rasp-
berry Pis under the name of Clupiter (a mixture of the words
Cluster and Pi), which is intended to be a small-scale replica
of a supercomputer.

The Raspberry Pi is a low-cost, low-power, small-board
computer commonly used in educational environments [1], [2].
Specifically, the Raspberry Pi 4B, the newest version of the
Standard form factor that was available at the time of this
work, was used to build Clupiter.

The Raspberry Pi boards have been connected and con-
figured so that they can work collaboratively as if they
were a single computer. Its performance was evaluated and
a specific web application was developed to help show how
supercomputers can be used to accelerate the execution of
computationally intensive applications.

The paper is structured as follows. In section II we give
a brief summary of related work. In section III we outline
the requirements analysis performed, as well as the hardware

and software design decisions and the configuration process of
the resulting infrastructure. A performance evaluation, using
the NAS Parallel Benchmarks (NPB) [3], is carried out in
section IV. Section V describes the web application developed
to help explain the internal operation of Clupiter. The article
ends with the main conclusions.

II. RELATED WORK

Raspberry Pi boards include all the essential circuits, such as
CPUs (Central Processing Unit), GPUs (Graphical Processing
Unit) and input/output circuits, making them well suited for
use in computer-related educational projects. They have been
used, for example, to teach topics such as image process-
ing [4], signal processing [5], real-time control algorithms [6],
or even cybersecurity [7].

More closely related to the topic of this article, there are
previous experiences in the literature where several Rasp-
berry Pis have been used to build low-cost, low-power clus-
ters to help understand concepts related to high-performance
computing. Examples include the Iridis-pi cluster [8], con-
sisting of 64 Raspberry Pis connected via Ethernet and
housed in a chassis built from Lego blocks; the Wee
Archie infrastructure (https://www.archer2.ac.uk/community/
outreach/materials/wee archie), built with 18 Raspberry Pi
boards packaged in a transparent box, and intended to be
the scaled-down version of the EPCC (Edinburgh Parallel
Computing Center) ARCHER2 supercomputer; or the cluster
coffer project [9], where 16 Raspberry Pis are housed in a
portable metal case and interconnected by a Gigabit Ethernet
network.

Previous proposals differ fundamentally in the final appear-
ance of the cluster and the monitoring information that can
be obtained during the execution of parallel applications. In
this sense, Clupiter’s key strengths are: its organization, since
its hardware has been assembled to emulate the structure of a
real supercomputer; and its web application, which allows the
execution and monitoring of all NPB applications in a simple
and visual way.

Outside of the educational field, Raspberry Pi clusters have
been used for a number of different applications. To mention
a few examples, in [10] they are used to run data mining
algorithms, in [11] to speed up the execution of a parallel



TABLE I: Total cost of Clupiter

Units Material Cost (e)
8 Raspberry Pi 4B 392.00
1 Gigabit Switch 33.60
1 USB Ethernet 23.00
2 RPI Towers 54.00
1 120mm Fan 18.00
1 Power Supply 27.00
8 32GB MicroSD 104.00

10 Magnetic USB-C cables 26.16
1 MT3608 Step-up 1.79

Total 679.55

watermarking algorithm, or in [12] to monitor agricultural
land.

III. CLUPITER DESIGN

Before deciding on the hardware and software components
of our cluster, a requirements analysis was carried out and the
following conclusions were drawn:

• The cluster must be small and manageable, discarding
structures where nodes are “free” and “dispersed”.

• It must be visually pleasing and comprehensible, with
easily identifiable parts, as isolated and distinguishable as
possible.

• All nodes must be connected to each other in an N-to-N
topology, i.e., the typical internal structure of an Ethernet
switch.

• The cluster must be able to run generic parallel appli-
cations that make use of all nodes.

• It must be reasonable, with quantity and quality of
materials adequate to its expectations, and using modern
components with a good value for money.

A description of the hardware and software components
that have been selected to meet these requirements and their
configuration is given below.

A. Hardware components

Table I summarizes the hardware components used and their
cost in euros (excluding VAT).

Eight Raspberry Pi 4B devices have been chosen as cluster
nodes. The CPU of this model is the Broadcom BCM2711,
a processor with ARMv8-A architecture and 4 Cortex-A72
cores, running at 1.5 GHz and backed by 2 GB of memory.
The choice of this board was based on its small form factor
and low-power consumption and cost, which makes it an
ideal solution for this work, as it does not require very
powerful hardware, but rather a lot of low-power hardware
to simulate the structure of a supercomputer. A MicroSD card
was purchased for each Raspberry Pi, which is needed to store
the operating system.

Cluster components receive the necessary power for opera-
tion from a 5V, 30A power supply, resulting in 150W of power,
which is three times the minimum power requirements, and
twice as much as recommended.

To connect the nodes, an 8-port Gigabit Ethernet switch
operating at 5V has been used, which allows it to be connected
directly to the power supply. It should be noted that the cluster
must be accessible from the outside, so we actually need nine
ports. To solve this drawback, a USB 3.0 to Gigabit Ethernet
adapter is added, which is connected to the Cluster master
node and bridged with the internal interface, thus creating a
virtual 9-port switch (see Figure 1).

The Raspberry Pi boards are stacked vertically in two towers
of 4 units each, so that they can be easily wired, accessed
and cooled. Between the two towers sits a 120mm fan, which
while not essential for heat dissipation purposes, serves as
an interesting analogy to the importance of cooling in real
supercomputers. The chosen fan operates at 12V; however,
feeding it at this voltage would cause it to run at full power
constantly. To avoid this, a variable step-up is used to keep the
fan at a fixed low speed to reduce the noise level. The electrical
connection of these components can be seen in Figure 2.

The final result of the assembly of all these hardware
modules can be seen in the render in Figure 3. In that image,
the multiple zones of the chassis can be identified. Starting
with the bottom area, we have the power supply and the DC
and AC cable connections. The switch, which interconnects the
eight devices with each other at 1 Gbps in full duplex mode,
is located in the upper area. The two Raspberry Pi towers
are placed in the middle area, oriented with the input/output
interfaces facing outwards. They are cooled by the fan running
through them. Figure 4 shows an actual picture of Clupiter and
its connections.

B. Software components

The Arch Linux operating system was installed on the
hardware described in the previous section. It is a lightweight
and flexible Linux distribution with extensive documentation
on the Arch Wiki (https://wiki.archlinux.org).

In order to run parallel codes on Clupiter we will use MPI
(Message Passing Interface) [13], the de facto standard for
programming distributed-memory parallel systems. A parallel
MPI program consists of several processes, each one with
associated local memory, that can communicate through the
interconnection network by using send and receive routines.
In this work we use a free implementation of MPI, OpenMPI
(https://www.open-mpi.org), since it is the official supported
library provided by Arch Linux in its repositories.

In addition, a web application was developed to monitor the
status and historical data of the cluster in real time, as well
as to provide interactive explanations about the operation of
the MPI programs. This web application will be explained in
detail in Section V.

C. Cluster configuration

In order to manage the cluster, each node must be assigned
an IP address. Due to its characteristics, and especially to the
fact that the connection from the outside will be variable and
not always available, static IP addresses are configured on each



0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8

Fig. 1: Clupiter physical network diagram

Fig. 2: Clupiter electrical diagram

of the nodes, as well as a default gateway address, which will
sometimes be active and sometimes not.

In order to launch MPI applications, a user account named
mpiuser is created. In addition, non-interactive authentica-
tion is configured for SSH by using a public and private
key pair. Non-interactive authentication via private key is
required so that the mpiuser can establish unattended SSH
connections to the other nodes during the execution of MPI
programs.

Finally, since calls to the mpirun command for running
MPI jobs on multiple hosts execute the same command on all
of them, there must be some kind of shared storage mounted
under the same path on all the hosts. To satisfy this need for
shared storage, NFS (Network File System) is chosen. The
server will be the master node and all other nodes will be
clients.

The entire configuration process is documented in more
detail in [14], where all the Linux commands used for this
purpose are specified.

IV. PERFORMANCE EVALUATION

Once the cluster is up and running, we test its ability to run
MPI applications and its performance. Although performance
is not a priority, it is convenient to perform these tests, espe-
cially to be able to observe the impact of the communication
network between the cores of a single CPU (remember that
each CPU has four cores), or between multiple CPUs and
memories. This is done by using the NPB benchmarks [3],
a set of numerical computational kernels designed by the
NASA’s Supercomputing Division for measuring supercom-
puter performance. Figures 5, 6 and 7 show the achieved re-
sults, expressed in millions of operations per second (MOPS),
for a representative subset of the NPB applications. The results
obtained with the other NPB applications can also be found
at [14].

Specifically, results are shown for:

• CG (Conjugate Gradient): It solves systems of linear
equations of symmetric and positive definite matrices
using the conjugate gradient iterative method.



Fig. 3: Clupiter infographic

Fig. 4: Photo of Clupiter and its connections

• EP (Embarrassingly Parallel): It contains a massively
parallel kernel that serves to provide an estimate of
floating-point performance bounds.

• IS (Integer Sort): It sorts integer number and it is useful
to test both the speed of computation with integers and
the performance of communications.

The three applications were run using the class C size. Five
runs of each were performed and the average number of MOPS
was calculated. The dashed vertical line in the graphs shows
the transition from single-node execution (using all four cores)
to multi-node execution. Intra-node communications are per-
formed via shared memory, while inter-node communications
use the Gigabit Ethernet network.

1 2 4 8 16 32
0

500

1,000

1,500

#cores

M
O

PS

Fig. 5: Performance for the CG kernel

1 2 4 8 16 32
0

200

400

600

800

#cores

M
O

PS

Fig. 6: Performance for the EP kernel

As it can be seen, the results are excellent for EP (see
Figure 6) which, by its nature, allows obtaining a very good
floating-point performance. On the other hand, there is a no-
ticeable impact when running benchmarks that make intensive
use of inter-node communications. This can be observed in the
IS graph of Figure 7, where performance drops sharply when
running in a two-node configuration (i.e., eight cores). As for
CG (Figure 5), it can be seen that not only performance is not
improved by going from two to four cores, but it actually gets
worse. This effect is due to the small bandwidth offered by
the single memory chip built into each Raspberry Pi. Despite
this behavior on single-node runs, performance does increase
when running kernels in distributed memory. In some cases,
even more than doubling the previous performance, as it occurs
when going from 16 to 32 cores in CG and EP.

V. WEB APPLICATION

The main objective of this work is to build a small-scale
replica of a supercomputer that can be used to explain the



1 2 4 8 16 32
0

20

40

60

80

100

#cores

M
O

PS

Fig. 7: Performance for the IS kernel

operation of a parallel system, as well as to carry out practical
demonstrations of its operation, both live and through videos.
For this purpose, a web application has been developed from
which the benchmarks described in the previous section can
be run and monitored, and videos about parallel computing
can be watched.

We have chosen to implement this functionality as a web
application because it offers universality and simplicity (the
web application can be accessed from any operating system
and any browser). To run this application, it will only be
necessary to connect through a browser to the address of the
master node, which is the one that hosts the application.

The technology on which the backend of the web ap-
plication is programmed is nodejs, in particular, expressjs
(https://expressjs.com/). Moreover, it makes use of the APIs
of Netdata and socket.io. The choice of socket.io is due to the
simplicity and elegance it brings to the code. Using socket.io
we can make calls to the backend from the web application in
the same programming style as in Android, making it familiar
and straightforward. On the other hand, Netdata [15] is a
free and open source monitoring software, which is easily
configured and integrated, and allows obtaining information
from the Clupiter nodes in real time. To use the data provided
by this software, it must first be installed and activated on each
of the cluster nodes.

The web application has three tabs: “Home”, “Monitoring”
and “About”. From the “Home” tab two educational videos,
created specifically for this project, can be accessed. The first
one lasts about 6 minutes and introduces, in a very informative
way, the concept of a supercomputer, providing historical
context and figures about the capacity of these infrastructures,
as well as their utilities and achievements. This is followed
by a description of Clupiter and its fundamental parts, which
are related to their counterparts in a real supercomputer. The
second video, a more technical one, lasts about seven minutes
and introduces, through hand-illustrated animations, the inner

workings of a supercomputer, the need for them on a day-to-
day basis, and the constraints that parallel programs have to
overcome, using simple examples and avoiding technicalities.
This is followed by a brief introduction to the most basic MPI
operations. Both videos have also been hosted and subtitled
in both English and Spanish on the YouTube platform. The
videos can be played from the following URLs: https://youtu.
be/o76-VP6WFCo and https://youtu.be/if0MWI 9xzM.

The “Monitoring” tab provides access to a page from which
each of the NPB benchmarks (class C) can be run, namely
LU, CG, FT, IS, MG and EP. The page shows the real-time
impact that the execution of the benchmark has on the load
and network traffic of each node, and its output is displayed
on a terminal. Figure 8 shows an english translated version of
this monitoring page. At the top, there are the CPU usage and
network traffic meters for each of the Raspberry Pi boards,
while at the bottom there are the buttons to run the different
test programs, allowing us to observe in real time their impact
on the different nodes. Specifically, the figure shows the output
during the execution of the FT (Fast Fourier Transform) kernel.
Thanks to this monitorization, it can be observed that during
the execution of this application all nodes work in parallel,
and the communication and computation phases alternate.

Finally, the “About” tab includes, among other information,
a brief description of Clupiter.

VI. CONCLUSIONS

This paper has presented Clupiter, a miniature supercom-
puter with all its sections well differentiated and extrapolated
to a real supercomputer.

Although performance and scalability are not good (note
that Raspberry Pi boards are not designed to be particularly
efficient computers in this regard), Clupiter is able to run par-
allel programs and test how the different hardware components
of the system can work together to accelerate the execution
of scientific and engineering applications. That was, after all,
the ultimate goal of this project.

Clupiter is currently available at the ”Technology Demon-
strator Room” of the Center for Information and Communi-
cations Technology Research (CITIC, https://citic.udc.es/en/
technology-demonstrator/) of the Universidade da Coruña as
an educational tool. It is used during visits to the center by,
among other audiences, high school students interested in
technology and engineering, in order to engage them in the
supercomputing arena.

All resources related to this work, including the source code
of the web application, are available under the MIT license at
https://github.com/forcegk/GEI TFG.

ACKNOWLEDGMENTS

Clupiter has been supported by grants EDC431C 2021/30
(Xunta de Galicia, Consolidation Program of Competitive
Reference Groups) and PID2022-136435NB-I00, funded by
MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way
of making Europe”, EU.



Fig. 8: Clupiter monitoring page

REFERENCES

[1] B. Balon and M. Simić, “Using Raspberry Pi computers in education,”
in 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 671–
676.

[2] N. S. Yamanoor and S. Yamanoor, “High quality, low cost education
with the Raspberry Pi,” in 2017 IEEE Global Humanitarian Technology
Conference (GHTC), 2017, pp. 1–5.

[3] NASA, “NAS Parallel Benchmarks,” https://www.nas.nasa.gov/software/
npb.html.

[4] J. Marot and S. Bourennane, “Raspberry Pi for image processing
education,” in 25th European Signal Processing Conference (EUSIPCO),
2017, pp. 2364–2366.

[5] G. Pasolini, A. Bazzi, and F. Zabini, “A Raspberry Pi-based platform
for signal processing education [SP Education],” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 151–158, 2017.

[6] J. Sobota, R. PiŜl, P. Balda, and M. Schlegel, “Raspberry Pi and Arduino
boards in control education,” IFAC Proceedings Volumes, vol. 46, no. 17,
pp. 7–12, 2013.

[7] P. Legg, A. Mills, and I. Johnson, “Teaching offensive and defensive
cyber security in schools using a Raspberry Pi cyber range,” Journal of
The Colloquium for Information Systems Security Education, vol. 10,
no. 1, 2023, 9 pages.

[8] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S.
O’Brien, “Iridis-pi: a low-cost, compact demonstration cluster,” Cluster
Computing, vol. 17, pp. 349–358, 2014.

[9] P. Gschwandtner, A. Hirsch, P. Thoman, P. Zangerl, H. Jordan, and
T. Fahringer, “The cluster coffer: teaching HPC on the road,” Journal
of Parallel and Distributed Computing, vol. 155, pp. 50–62, 2021.

[10] J. Saffran, G. Garcia, M. A. Souza, P. H. Penna, M. Castro, L. F. Góes,
and H. C. Freitas, “A low-cost energy-efficient Raspberry Pi cluster
for data mining algorithms,” in Euro-Par 2016: Parallel Processing
Workshops, Lecture Notes in Computer Science, vol. 10104. Springer,
2017, pp. 788–799.

[11] K. M. Hosny, A. Magdi, N. A. Lashin, O. El-Komy, and A. Salah, “Ro-
bust color image watermarking using multi-core Raspberry Pi cluster,”

Multimedia Tools and Applications, vol. 81, no. 12, pp. 17 185–17 204,
2022.

[12] A. Aher, J. Kasar, P. Ahuja, and V. Jadhav, “Smart agriculture using
clustering and IOT,” International Research Journal of Engineering and
Technology, vol. 5, no. 03, pp. 4065–4068, 2018.

[13] Message Passing Interface Forum, “MPI: A message-passing inter-
face standard version 4.0,” https://www.mpi-forum.org/docs/mpi-4.0/
mpi40-report.pdf, 2021.

[14] A. Rodrı́guez-Iglesias, “Hardware and software implementation of a
Raspberry Pi-based mini-supercomputer (in Spanish),” https://github.
com/forcegk/GEI TFG/releases/download/memoria/MemoriaTFG.pdf,
2021, B.S. Thesis in Computer Engineering, Universidade da Coruña.

[15] Netdata, Inc., “Monitoring everything in real time for free,” https://www.
netdata.cloud.


